Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cold boxes reach home

    Three cryogenic plant cold boxeswere moved last week from temporary storage to their final destination on the ITER site. It was the occasion to remember a piece [...]

    Read more

  • Kazakh Tokamak celebrates first plasma

    The fusion world directed its applause to the east earlier this month as the Kazakh tokamak KTM started operations with a first plasma discharge. 'We are happ [...]

    Read more

  • Small delivery for a very massive tool

    At ITER, two massive sector sub-assembly toolswill suspend and equip the vacuum vessel sectors in the Assembly Hall before they are transported by overhead cran [...]

    Read more

  • Without minimizing challenges, Council reaffirms commitment

    On 24 October 2007, the ITER Organization was officially established following the ratification by the seven ITER Members of the project's constitutive document [...]

    Read more

  • Heat waves

    Plasma is like a tenuous mist of particles—light atoms that have been dissociated into ions (the atom nucleus) and free-roaming electrons. In order to study pla [...]

    Read more

Of Interest

See archived articles

Measuring hard-to-diagnose 3D plasmas

A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code. (Click to view larger version...)
A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code.
Scientists at the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the National Institute for Fusion Science (NIFS) in Japan have developed a rapid method for meeting a key challenge for fusion science. The challenge has been to simulate the diagnostic measurement of plasmas produced by twisting, or 3D, magnetic fields in fusion facilities. While such fields characterize facilities called stellarators, otherwise symmetric, or 2D, facilities such as tokamaks also can benefit from 3D fields.

Researchers led by PPPL physicist Sam Lazerson have now created a computer code that simulates the required diagnostics, and have validated the code on the Large Helical Device stellarator in Japan. Called "Diagno v2.0," the new program utilizes information from previous codes that simulate 3D plasmas without the diagnostic measurements. The addition of this new capability could, with further refinement, enable physicists to predict the outcome of 3D plasma experiments with a high degree of accuracy.

Read more here.


return to the latest published articles