Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • 22nd ITER Council|Project on track for First Plasma in 2025

    The ITER Council, ITER's governing body, met for the twenty-second time on 20 and 21 June 2018 at the ITER Organization in St Paul-lez-Durance. Council Members [...]

    Read more

  • Fusion machines | The second-hand market

    Whatever their size, fusion devices are fine pieces of technology that are complex to design and expensive to build. As research progresses and experimental pro [...]

    Read more

  • Manufacturing in China | A set of clamps to resist all loads

    China is providing an extensive array of supports and clamps for ITER's superconducting magnet systems—in all, more than 1,600 tonnes of equipment. On 9 June, t [...]

    Read more

  • Power electronics | Coaxial cables arrive from Russia

    Thirty-eight reels of cable on 13 specially equipped trailers ... the recent convoy of electrotechnical equipment shipped by the Russian Domestic Agency was the [...]

    Read more

  • Conference|Lions and mammoths and cave bears—oh my!

    Separated by less than 200 kilometres in space—but by 36,000 years in time—the ITER Tokamak and the Chauvet Cave may seem to have little in common. But to scien [...]

    Read more

Of Interest

See archived articles

Measuring hard-to-diagnose 3D plasmas

A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code. (Click to view larger version...)
A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code.
Scientists at the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the National Institute for Fusion Science (NIFS) in Japan have developed a rapid method for meeting a key challenge for fusion science. The challenge has been to simulate the diagnostic measurement of plasmas produced by twisting, or 3D, magnetic fields in fusion facilities. While such fields characterize facilities called stellarators, otherwise symmetric, or 2D, facilities such as tokamaks also can benefit from 3D fields.

Researchers led by PPPL physicist Sam Lazerson have now created a computer code that simulates the required diagnostics, and have validated the code on the Large Helical Device stellarator in Japan. Called "Diagno v2.0," the new program utilizes information from previous codes that simulate 3D plasmas without the diagnostic measurements. The addition of this new capability could, with further refinement, enable physicists to predict the outcome of 3D plasma experiments with a high degree of accuracy.

Read more here.


return to the latest published articles