Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Towards DEMO | What will the blanket teach us?

    We often hear about the scientific ideas ITER is designed to confirm, but the project also has an important role as a technology demonstrator. The blanket is a [...]

    Read more

  • Summer works | A new chapter opens

    Notice anything? Yes, the giant poster (25 x 50 m) on the temporary wall of the Assembly Hall has been removed. Displaying a cutaway of the ITER Tokamak, it had [...]

    Read more

  • Image of the week | On the thruway from Hefei to Shanghai

    Over the next four years, China will be shipping approximately 100 large components for the magnet feeder system, adding up to 1,600 tonnes of equipment in all. [...]

    Read more

  • India | Modi praises ITER at UNESCO

    In August, while on official visit to France at the invitation of President Emmanuel Macron, Prime Minister Narendra Modi of India shared his vision of cooperat [...]

    Read more

  • Vacuum technology | Record-breaking sealing performance

    The ITER vacuum vessel, its ports and port extensions, and port plugs all provide the vacuum boundary and first safety confinement barrier of the ITER machine. [...]

    Read more

Of Interest

See archived entries

Measuring hard-to-diagnose 3D plasmas

A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code. (Click to view larger version...)
A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code.
Scientists at the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the National Institute for Fusion Science (NIFS) in Japan have developed a rapid method for meeting a key challenge for fusion science. The challenge has been to simulate the diagnostic measurement of plasmas produced by twisting, or 3D, magnetic fields in fusion facilities. While such fields characterize facilities called stellarators, otherwise symmetric, or 2D, facilities such as tokamaks also can benefit from 3D fields.

Researchers led by PPPL physicist Sam Lazerson have now created a computer code that simulates the required diagnostics, and have validated the code on the Large Helical Device stellarator in Japan. Called "Diagno v2.0," the new program utilizes information from previous codes that simulate 3D plasmas without the diagnostic measurements. The addition of this new capability could, with further refinement, enable physicists to predict the outcome of 3D plasma experiments with a high degree of accuracy.

Read more here.


return to the latest published articles