Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Open Doors Day | An intense and unforgettable experience

    Saturday was Jacques's birthday. At age 90, the long-retired engineer from Aix-en-Provence had only one item on his wish list: to visit ITER for a third time an [...]

    Read more

  • Power conversion | A potent illustration of the "One ITER" spirit

    Europe made the buildings; the piping came from India; China and Korea provided the transformers; Russia manufactured the massive 'busbar' network. The ITER Org [...]

    Read more

  • Fusion world | Upgrade completed on DIII-D tokamak

    The DIII-D National Fusion Program (US) has completed a series of important enhancements to its fusion facility, providing researchers with several first-of-a-k [...]

    Read more

  • Vacuum lab | Ensuring leak test sensitivity

    A helium leak test is one of several factory acceptance tests planned for the sectors of the ITER vacuum vessel before they are shipped to ITER. In a vacuum lab [...]

    Read more

  • Bookmark | The Future of Fusion Energy

    To write about fusion is to walk a fine line between the temptation of lyricism and the arid demands of scientific accuracy. Whereas the general media tends to [...]

    Read more

Of Interest

See archived entries

Measuring hard-to-diagnose 3D plasmas

A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code. (Click to view larger version...)
A simulated plasma in the Large Helical Device showing the thin blue saddle coils that researchers used to make diagnostic measurements with the new computer code.
Scientists at the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and the National Institute for Fusion Science (NIFS) in Japan have developed a rapid method for meeting a key challenge for fusion science. The challenge has been to simulate the diagnostic measurement of plasmas produced by twisting, or 3D, magnetic fields in fusion facilities. While such fields characterize facilities called stellarators, otherwise symmetric, or 2D, facilities such as tokamaks also can benefit from 3D fields.

Researchers led by PPPL physicist Sam Lazerson have now created a computer code that simulates the required diagnostics, and have validated the code on the Large Helical Device stellarator in Japan. Called "Diagno v2.0," the new program utilizes information from previous codes that simulate 3D plasmas without the diagnostic measurements. The addition of this new capability could, with further refinement, enable physicists to predict the outcome of 3D plasma experiments with a high degree of accuracy.

Read more here.


return to the latest published articles