Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Top management | Tim Luce, Head of Science & Operation

    What does a seven-year-old growing up in a small community in Arkansas know about what it means to be an 'atomic scientist'? Probably not much. Except, remember [...]

    Read more

  • Blanket shield blocks | Series production milestone in Korea

    It takes many months for a single forged block of stainless steel to be transformed into the complex shape of an ITER blanket shield block, full of gullies, cha [...]

    Read more

  • Image of the week | 5 top lid segments expected

    A little less than five years ago, in December 2015, the first segments of the ITER cryostat (out of a total of 54) were delivered to the construction site from [...]

    Read more

  • On site | As ITER begins assembly, HVAC becomes mission critical

    Not only will heating, ventilation and air conditioning (HVAC) help protect people and equipment during the assembly phase at ITER, but they will also help ensu [...]

    Read more

  • Vacuum vessel | Sector #6 is leak tight

    The first ITER vacuum vessel sector has passed a helium leak test on site with flying colours. Back in March 2020, as experts from the Korean Domestic Agency [...]

    Read more

Of Interest

See archived entries

Royalties for intellectual property: a big first for ITER!

Michael Loughlin, Nuclear Shielding & Analysis Coordinator and Anna Tyler, Assistant Legal Advisor

With support from AMEC, a UK-based company, the ITER Organization has developed software that allows a web-based program to display data on radiation calculations throughout the ITER facilities. (Click to view larger version...)
With support from AMEC, a UK-based company, the ITER Organization has developed software that allows a web-based program to display data on radiation calculations throughout the ITER facilities.
The technological demonstration of nuclear fusion as a power source may be a couple of decades away but we don't have to wait till then to start reaping the benefits of research at ITER. Like all journeys of discovery we will meet unexpected obstacles and discover wondrous new sights, but sometimes it is the obstacles that provide the greatest reward when, by overcoming them, new techniques are born and intellectual property is generated.

For the first time, the ITER Organization has licensed intellectual property to a third party against royalties, in compliance with the ITER Agreement and its Annex on Information and Intellectual Property. ITER's Legal Affairs contributed to the drafting of the agreement.

With support from AMEC, a UK-based company, the ITER Organization has developed software that allows a web-based program to display data on radiation calculations throughout the ITER facilities. Due to the potential applications of this software for technological areas outside of ITER and/or fusion research and development, a private company from one of the ITER Members has requested a license in order to commercially exploit this software.

Based on the principles of the ITER Agreement and its Annex on Information and Intellectual Property, the company was granted a non-exclusive, non-transferable, worldwide license to access, use and sub-license the software, software package and source code or any substantial part of it. For their part, the Domestic Agencies will be entitled to a licence by the ITER Organization, as is foreseen in the Annex on Information and Intellectual Property of the ITER Agreement.

Nuclear fusion produces radiation in the form of neutrons and gamma rays. The fusion machine is therefore designed to withstand this radiation and the buildings to shield the workers and the public. For the engineers designing the disparate components that make up the ITER machine, it is necessary to know the radiation levels that their particular system is likely to encounter.

This calculation is done by running massive computer simulations of how radiation travels through the complex geometry of pipes, walls, floors, doors and staircases of the ITER complex. Radiation maps result—something like electronic atlases showing what the radiation levels will be in every room for different operating states of ITER and during cask transfer.

How do you create an atlas accessible to anyone who needs it, easy enough to interpret, and containing all the information they need?

For this, you need a database capable of holding millions of 3D maps, a way to display them, and access through the intranet. This might sound easy enough but this was one of those occasions where unforeseen problems were encountered. The ITER Organization successfully developed a specially designed computer application to link the various tools and provide a communication protocol between them.


return to the latest published articles