Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Local partners | A celebration for ITER's "vital artery"

    ITER is made possible through the work of thousands of scientists, engineers, workers of all trades and industries across the globe. It is also made possible by [...]

    Read more

  • Photo reportage | Travelling with a coil

    From the salt marshes of the inland sea Étang-de-Berre to the rolling hills around the ITER site (with a view of some of the highest alpine summits) an ITER con [...]

    Read more

  • Image of the week | Shiny steel and sharp edges

    All shiny steel, sharp edges and perfectly machined penetrations and grooves, two toroidal field coils are being prepared for the pre-assembly process. The sp [...]

    Read more

  • Vacuum vessel sector #6 | On its way

    A 440-tonne, 40-degree sector of the ITER vacuum vessel left Busan, Korea, on Sunday 28 June. A unique component has taken to the sea—one that was more than t [...]

    Read more

  • Top management | Keun-Kyeong Kim, Head of Construction

    In the small Korean village (25 houses!) where Keun-Kyeong Kim spent the first eight years of his life, there was no electricity— just batteries to power transi [...]

    Read more

Of Interest

See archived entries

Royalties for intellectual property: a big first for ITER!

Michael Loughlin, Nuclear Shielding & Analysis Coordinator and Anna Tyler, Assistant Legal Advisor

With support from AMEC, a UK-based company, the ITER Organization has developed software that allows a web-based program to display data on radiation calculations throughout the ITER facilities. (Click to view larger version...)
With support from AMEC, a UK-based company, the ITER Organization has developed software that allows a web-based program to display data on radiation calculations throughout the ITER facilities.
The technological demonstration of nuclear fusion as a power source may be a couple of decades away but we don't have to wait till then to start reaping the benefits of research at ITER. Like all journeys of discovery we will meet unexpected obstacles and discover wondrous new sights, but sometimes it is the obstacles that provide the greatest reward when, by overcoming them, new techniques are born and intellectual property is generated.

For the first time, the ITER Organization has licensed intellectual property to a third party against royalties, in compliance with the ITER Agreement and its Annex on Information and Intellectual Property. ITER's Legal Affairs contributed to the drafting of the agreement.

With support from AMEC, a UK-based company, the ITER Organization has developed software that allows a web-based program to display data on radiation calculations throughout the ITER facilities. Due to the potential applications of this software for technological areas outside of ITER and/or fusion research and development, a private company from one of the ITER Members has requested a license in order to commercially exploit this software.

Based on the principles of the ITER Agreement and its Annex on Information and Intellectual Property, the company was granted a non-exclusive, non-transferable, worldwide license to access, use and sub-license the software, software package and source code or any substantial part of it. For their part, the Domestic Agencies will be entitled to a licence by the ITER Organization, as is foreseen in the Annex on Information and Intellectual Property of the ITER Agreement.

Nuclear fusion produces radiation in the form of neutrons and gamma rays. The fusion machine is therefore designed to withstand this radiation and the buildings to shield the workers and the public. For the engineers designing the disparate components that make up the ITER machine, it is necessary to know the radiation levels that their particular system is likely to encounter.

This calculation is done by running massive computer simulations of how radiation travels through the complex geometry of pipes, walls, floors, doors and staircases of the ITER complex. Radiation maps result—something like electronic atlases showing what the radiation levels will be in every room for different operating states of ITER and during cask transfer.

How do you create an atlas accessible to anyone who needs it, easy enough to interpret, and containing all the information they need?

For this, you need a database capable of holding millions of 3D maps, a way to display them, and access through the intranet. This might sound easy enough but this was one of those occasions where unforeseen problems were encountered. The ITER Organization successfully developed a specially designed computer application to link the various tools and provide a communication protocol between them.


return to the latest published articles