Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fuelling fusion | The magic cocktail of deuterium and tritium

    Nuclear fusion in stars is easy: it just happens, because the immense gravity of a star easily overcomes the resistance of nuclei to come together and fuse. [...]

    Read more

  • 360° image of the week | The cryoplant

    Cryogenics play a central role in the ITER Tokamak: the machine's superconducting magnets (10,000 tonnes in total), the vacuum pumps, thermal shields and so [...]

    Read more

  • Central solenoid assembly | First sequences underway

    What does it take to assemble the magnet at the heart of ITER? Heavy lifting, unerring accuracy, and a human touch. The central solenoid will be assembled from [...]

    Read more

  • Assembly | The eyes of ITER

    Supervisors ensure compliance and completion as machine and plant assembly forges ahead. In Greek mythology, Argus was considered an ideal guardian because his [...]

    Read more

  • Component repairs | Removing, displacing and disassembling

    A good repair job starts with a cleared workbench, the right tools on hand and a strong vise. This axiom, true for odd jobs in a home workshop, is also true for [...]

    Read more

Of Interest

See archived entries

Plasma-facing components for ITER and beyond

Re-solidified tungsten melt after high heat-flux exposures in the TEXTOR edge-plasma (power density: 20 MW/m2, exposure time: 5 s) (Click to view larger version...)
Re-solidified tungsten melt after high heat-flux exposures in the TEXTOR edge-plasma (power density: 20 MW/m2, exposure time: 5 s)
During the 14th International Conference on Plasma Facing Materials and Components (PFMC-14, 13-17 May) in Jülich, Germany, the focus was directed towards solving the issues related to wall materials and components in a future fusion reactor. Basic material and physics issues were linked with engineering activities related to fusion materials, producing synergistic results for future research.

Prior to the main conference, a tutorial course was given by experts; these introductory lectures were dedicated to PhD students, postdocs and newcomers in the field. Surprisingly, roughly three-fourths of all participants used the chance to update their knowledge and get an inside view into other research areas by attending these tutorial lectures.

Facing the camera: The participants to the 14th edition of the PFMC. (Harry Reimer, FZJ) (Click to view larger version...)
Facing the camera: The participants to the 14th edition of the PFMC. (Harry Reimer, FZJ)
More than 200 international scientists from 28 nations attended the conference in Jülich to discuss the viability of existing and future material options—in particular the plasma-facing materials for the first wall (beryllium) and the divertor (tungsten, carbon) in ITER, but also future material options including tungsten alloys, steels and even liquid metals. Results obtained to-date related to materials and components under extreme conditions are influencing upcoming decisions on ITER operation.

One important decision to be made is the selection between carbon and tungsten as material for the strike point area of the first ITER divertor—a decision scheduled for later this year. Furthermore, solving issues related to the highly demanding operational requirements of a future power plant such as the combination of steady state operation, high neutron loading, material erosion and component lifetime under the high particle and heat fluxes, is the next step to affordable and safe fusion power.

Tungsten droplet originating from ELM-simulation experiments in the electron beam test facility JUDITH 1. (Click to view larger version...)
Tungsten droplet originating from ELM-simulation experiments in the electron beam test facility JUDITH 1.
As a special highlight at this year's PFMC conference, the first results of the ITER-like wall at JET were discussed in a special session. Operating since 2011 with a beryllium main wall and an all-tungsten divertor, JET is a direct test bed for a better understanding of the plasma operation within the environment of the ITER-specific plasma-facing materials mix. It becomes even more relevant as carbon may be completely ruled out for use in ITER from the first day of operation. Results related to beryllium material migration, fuel retention, and material morphology are now available from JET and investigations are ongoing to transfer the obtained data directly to ITER.

The PFMC-14 Young Scientists Poster Prize was awarded to Rianne 't Hoen (FOM Institute DIFFER—Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, the Netherlands) for her contributions to the "High Flux and Fluence Exposures of Pre-Irradiated Tungsten to Deuterium Plasmas."

The next PFMC-15 conference will be held in Aix-en-Provence, France from 18-22 May 2015.


return to the latest published articles