Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Port cells | All 46 doors in place

    In ITER, ordinary objects and features often take on an awesome dimension. Take the doors that seal off the port cells around the Tokamak for instance. Doors th [...]

    Read more

  • Toroidal field coils | Two make a pair

    One of the essential 'building blocks' of the ITER Tokamak is the pre-assembly of two toroidal field coils, one vacuum vessel sector and corresponding panels of [...]

    Read more

  • Industrial milestone | Cryostat manufacturing comes to an end in India

    With a flag-off ceremony on 30 June, India's L&T Heavy Engineering marked the end of an eight-year industrial adventure—the manufacturing of the ITER cryost [...]

    Read more

  • Local partners | A celebration for ITER's "vital artery"

    ITER is made possible through the work of thousands of scientists, engineers, workers of all trades and industries across the globe. It is also made possible by [...]

    Read more

  • Photo reportage | Travelling with a coil

    From the salt marshes of the inland sea Étang-de-Berre to the rolling hills around the ITER site (with a view of some of the highest alpine summits) an ITER con [...]

    Read more

Of Interest

See archived entries

Adding fuel to MAST's fire

Culham Centre for Fusion Energy

Firing tiny deuterium pellets into the tokamak furnace is one of the most effective ways of getting fuel into the plasma, enabling fusion reactions and the unlocking of energy. (Click to view larger version...)
Firing tiny deuterium pellets into the tokamak furnace is one of the most effective ways of getting fuel into the plasma, enabling fusion reactions and the unlocking of energy.
They call it the "snowball in hell"—a bullet of frozen deuterium fuel heading at high speed into the furnace-like plasma of the MAST fusion device at Culham. A team at MAST is investigating this method of fuelling plasmas and how it will work in the future on the giant international experiment ITER.

Firing these tiny pellets is one of the most effective ways of getting fuel into the plasma, enabling fusion reactions and the unlocking of energy. This will become increasingly important as future fusion devices become bigger and plasmas get hotter to reach ignition, the point at which the plasma heats itself without external input—crucial for power-producing reactors. To achieve ignition, the density of the plasma core must be raised and sustained by fuelling it.

Luca Garzotti, one of the CCFE physicists studying pellet injection on MAST, explains the process: "Just like a car engine, a tokamak needs to be fuelled—the fuel goes in to the plasma and there is an exhaust to get rid of unwanted gases. In fusion, helium comes out of the exhaust via a system called the divertor. I'm looking at how we can put the fuel (deuterium and tritium) in at the start.

Read more on Culham Centre for Fusion Energy website.


return to the latest published articles