Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Computer-Aided Design | A new platform with Australia

    In September 2016, the signature of a Cooperation Agreement between the Australian Nuclear Science and Technology Organisation (ANSTO) and the ITER Organization [...]

    Read more

  • Ten years later | A prodigious adventure

    ITER began its existence as an aspiration in the early 1980s, as actors in the fusion community called for the joint machine that would demonstrate the feasibil [...]

    Read more

  • Image of the week | An impromptu visit

    Afteraddressing the UN Climate Change Conference on 15 November, French President Emmanuel Macron toured thecolourful COP23 exhibition zone. It was towards the [...]

    Read more

  • Cryoplant | How to install a compressor

    In order to properly install a helium compressor skid on its concrete pad, you need to start with a large push broom to sweep away the dust that inevitably accu [...]

    Read more

  • Magnetic system | Nine rings to fight the force

    Work on the pre-compression ringsof the ITER magnet system progresses in Europe, where work on a full-scale prototype is underway. These technically challenging [...]

    Read more

Of Interest

See archived articles

Adding fuel to MAST's fire

Culham Centre for Fusion Energy

Firing tiny deuterium pellets into the tokamak furnace is one of the most effective ways of getting fuel into the plasma, enabling fusion reactions and the unlocking of energy. (Click to view larger version...)
Firing tiny deuterium pellets into the tokamak furnace is one of the most effective ways of getting fuel into the plasma, enabling fusion reactions and the unlocking of energy.
They call it the "snowball in hell"—a bullet of frozen deuterium fuel heading at high speed into the furnace-like plasma of the MAST fusion device at Culham. A team at MAST is investigating this method of fuelling plasmas and how it will work in the future on the giant international experiment ITER.

Firing these tiny pellets is one of the most effective ways of getting fuel into the plasma, enabling fusion reactions and the unlocking of energy. This will become increasingly important as future fusion devices become bigger and plasmas get hotter to reach ignition, the point at which the plasma heats itself without external input—crucial for power-producing reactors. To achieve ignition, the density of the plasma core must be raised and sustained by fuelling it.

Luca Garzotti, one of the CCFE physicists studying pellet injection on MAST, explains the process: "Just like a car engine, a tokamak needs to be fuelled—the fuel goes in to the plasma and there is an exhaust to get rid of unwanted gases. In fusion, helium comes out of the exhaust via a system called the divertor. I'm looking at how we can put the fuel (deuterium and tritium) in at the start.

Read more on Culham Centre for Fusion Energy website.


return to the latest published articles