Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Image of the week | Tokamak-sur-mer

    At the height of the heat wave, in late June, surface temperature on the ITER worksite climbed to the 50 °C range. To continue work—and protect workers—a series [...]

    Read more

  • Space propulsion | Have fusion, will travel

    The idea of propelling rockets and spaceships using the power of the atom is nothing new: the Manhattan Project in the mid-1940s as well as countless endeavours [...]

    Read more

  • Cold fusion | End of story?

    Thirty years ago, two electrochemists at the University of Utah, Martin Fleischmann and Stanley Pons, created a sensation when they claimed they had achieved fu [...]

    Read more

  • Magnet feeders | Wave of deliveries ahead

    Several batches of magnet feeder components will arrive from China in September containing elements that need to be received, inspected and readied for installa [...]

    Read more

  • Tokamak cooling system procurement | Global team for better efficiency

    A unique work-sharing arrangement is expediting the design and fabrication of ITER's tokamak cooling water system and building the knowledge base that will be c [...]

    Read more

Of Interest

See archived entries

Anchored deep, holding tight

R.A.

In ITER, the devices that need to be attached to the walls (or floors, or ceilings) can weigh several tonnes. Embedded plates are the solution for extremely robust anchorage. (Click to view larger version...)
In ITER, the devices that need to be attached to the walls (or floors, or ceilings) can weigh several tonnes. Embedded plates are the solution for extremely robust anchorage.
Attaching a coat rack or shelf to a wall in your home is a relatively easy operation: drill a couple of holes, insert a dowel or wall plug, add the proper screws and the job is done.

In ITER, of course, things are slightly more complex. For structural as well as for nuclear confinement reasons, drilling holes in the walls of the installation is not practicable. And the devices that need to be attached to the walls (or floors, or ceilings)—the equivalent of our shelves and coat racks—can weigh several tons.

The solution comes in the form of an embedded plate. If you look at an embedded plate before it is embedded you might mistake it for a small coffee table equipped with supernumerary legs. Although embedded plates come in different sizes, they all consist of a thick steel plate onto which are welded equally thick steel studs with rounded heads.

Embedded plates are inserted into the rebar lattice prior to pouring concrete. As the plate is positioned in accordance with the 3D Configuration Management Model and tuned with a precision instrument (theodolite) in order to be level with the future concrete surface, the studs (up to 16 for the largest plates) penetrate deep into the lattice.

Embedded plates are inserted into the rebar lattice prior to pouring concrete. Each plate is positioned in accordance with the 3D Configuration Management Model and tuned with a theodolite in order to be level with the future concrete surface. (Click to view larger version...)
Embedded plates are inserted into the rebar lattice prior to pouring concrete. Each plate is positioned in accordance with the 3D Configuration Management Model and tuned with a theodolite in order to be level with the future concrete surface.
Once the concrete is poured and has set, the studs and their rounded head provide extremely robust anchorage, capable of supporting loads of up to ~90 metric tons in pure traction.

Equipment supports such as magnet feeders, cooling water system tanks, diagnostic systems, cryolines, cable trays, etc., can then be welded onto the plates.

In the floors, walls and ceilings of the Tokamak Complex there will be roughly 60,000 such embedded plates—16,000 in the basemat slab alone. Another significant client: the cable trays running inside the Complex and throughout the galleries outside will require 20,000 plates.

Although Configuration Management Models are very precise tools for positioning the plates, calculations and models must be confronted to reality. This is one of the roles played by the B2 slab mockup, a 150-square-metre structure that reproduces the complex rebar arrangements of the Tokamak Complex basemat slab.

"As with the rebar and concrete, we need to have hands-on experience of the difficulties we might encounter in the installation of the embedded plates," explains ITER Nuclear Buildings Section Leader Laurent Patisson.

The density of plates is such that there will almost certainly be some instances of conflict between the rebar lattice and the planned positioning of the plates. "The Configuration Management Model is now frozen for the B2 slab and will soon be frozen for the other levels," says Laurent. "If and when we encounter this type of conflict, the systems will have to adapt."

 


return to the latest published articles