Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fusion world | Mobilizing for long-pulse operation

    One of the key operational challenges in the development of fusion energy is the achievement, simultaneously, of high fusion performance and long-pulse operatio [...]

    Read more

  • ITER science | What is burning plasma?

    The dream of fusion power depends first and foremost on a self-sustaining fusion reaction, with most of the heating power needed coming from within the reaction [...]

    Read more

  • Plasma modelling | New SOLPS-ITER code version launched

    The widely used SOLPS-ITER tool for plasma edge modelling has evolved since its launch in 2015. At recent workshop at KU Leuven in Belgium, European specialists [...]

    Read more

  • Open Doors Day | Accessing the very heart of ITER

    Small or tall, knowledgeable or neophyte, from near or far ... the 600 people who took part in ITER's latest Open Doors Day all departed with the sense that som [...]

    Read more

  • Local | A question and answer session

    Nuclear safety policy in France requires that a local information commission (Commission locale d'information, CLI) be established every time a nuclear installa [...]

    Read more

Of Interest

See archived entries

Korea completes niobium-tin strand production

Arnaud Devred and Alexander Vostner from ITER (third and fifth from left) visited Kiswire Advanced Technology (KAT) just before the issue of ATPPs for the final batch of strand billets on 21 November. With them, from left to right, are Soun Pil Kwon and Soo-Hyeon Park from ITER Korea and Pyeong Yeol Park, Kihong Sim and Kyeong Ho Jang from KAT. (Click to view larger version...)
Arnaud Devred and Alexander Vostner from ITER (third and fifth from left) visited Kiswire Advanced Technology (KAT) just before the issue of ATPPs for the final batch of strand billets on 21 November. With them, from left to right, are Soun Pil Kwon and Soo-Hyeon Park from ITER Korea and Pyeong Yeol Park, Kihong Sim and Kyeong Ho Jang from KAT.
At the end of November, Korea became the first Domestic Agency to complete the production of niobium-tin (Nb3Sn) strand for ITER's toroidal field conductors.

Nb3Sn strand is the basic building block of ITER's large magnets, the key element that makes them superconducting. Superconductivity is essential to pursuing fusion energy generation because superconductors consume less power and are cheaper to operate than conventional counterparts, while carrying higher current and producing stronger magnetic field. Six Domestic Agencies (China, Europe, Japan, Korea, Russia and the US) are responsible for procuring over 400 tons of toroidal field conductor for ITER.

The Korean milestone was validated late November with the approval the Authorization To Proceed Points (ATPPs) by the ITER Organization for the final batch of strand billets. (A billet is the smallest traceable production unit of strand.) In order to assure quality and full traceability for ITER, the manufacturing information and test results of every billet are registered electronically in the Conductor Database, and then reviewed by the procuring Domestic Agency and finally given approval by the ITER Organization to proceed to next step. Remarkably, fully 2,038 individual Korean billets have passed thorough review by the Korean Domestic Agency and ITER.

The Korean share of toroidal field strand procurement amounts to 93 tonnes (20 percent of toroidal field strands). The manufacturing contract was awarded to Kiswire Advanced Technology (KAT), which began producing in 2009. To have completed the manufacturing in four years is an impressive rate of production considering that, worldwide, the production of Nb3Sn strand before ITER did not exceed 15 tonnes per year.

"The toroidal field conductor Procurement Arrangement with Korea is a good example of an ITER success story," states Arnaud Devred, who is responsible for the Superconductor Systems & Auxiliaries at ITER. "The close collaboration of the Korean Domestic Agency and the ITER Organization to monitor execution enabled both parties to address production issues in a timely and effective manner. This milestone is all the more remarkable in that the strand supplier KAT was new to the business when the contract was launched, but managed to adapt to the world-class standards imposed by the Procurement Arrangement."



return to the latest published articles