Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Remembering Bernard Bigot, ITER Director-General 2015-2022

    On the ITER site, the machinery of construction was humming just like on any weekday. Workers were concentrating on their tasks, laying rebar for new buildings [...]

    Read more

  • Tokamak assembly | Preparing for the Big Lift

    The distance was short but the challenge daunting: on Thursday last week, the first section of the plasma chamber was lifted 50 centimetres above its suppor [...]

    Read more

  • Image of the week | 13th toroidal field coil arrives from Europe

    The toroidal field coil procurement effort has been one of the longest of the ITER program, initiated by Procurement Arrangements signed in 2007 and 2008. Manuf [...]

    Read more

  • Diagnostics | Final Procurement Arrangement signed

    ITER Diagnostics reached an important milestone in December 2021 when it concluded the last Procurement Arrangement of the diagnostics program. After signing a [...]

    Read more

  • On site | A quick visit to the Control Building

    Work is progressing on the ITER Control Building, ergonomically designed for the 60 to 80 operators, engineers and researchers who will call it home.  [...]

    Read more

Of Interest

See archived entries

20 years ago, a DT shot heard around the world

TFTR's achievements generated headlines around the world and laid the foundation for the development of fusion energy in facilities such as ITER to demonstrate the feasibility of fusion power. (Click to view larger version...)
TFTR's achievements generated headlines around the world and laid the foundation for the development of fusion energy in facilities such as ITER to demonstrate the feasibility of fusion power.
Tensions rose in the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) as the seconds counted down.  At stake was the first crucial test of a high-powered mixture of fuel for producing fusion energy. As the control-room clock reached "zero," a flash of light on a closed-circuit television monitor marked a historic achievement: a world-record burst of more than 3 million watts of fusion energy—enough to momentarily light some 3,000 homes—fueled by the new high-powered mixture. The time was 11:08 p.m. on Thursday, 9 December 1993.

"There was a tremendous amount of cheering and clapping," recalled PPPL physicist Rich Hawryluk, who headed the Tokamak Fusion Test Reactor (TFTR), the huge magnetic fusion facility that produced the historic power. "People had been on pins and needles for a long time and finally it all came together." It did so again the very next day when TFTR shattered the mark by creating more than six million watts of fusion energy.

Thursday, 9 December 1993, 11:08 p.m. at PPPL: staffers monitor a closed-circuit screen focused on the experiment. (Click to view larger version...)
Thursday, 9 December 1993, 11:08 p.m. at PPPL: staffers monitor a closed-circuit screen focused on the experiment.
The achievements generated headlines around the world and laid the foundation for the development of fusion energy in facilities such as ITER to demonstrate the feasibility of fusion power. The results delivered "important scientific confirmation of the path we are taking toward ITER," said physicist Ed Synakowski, a PPPL diagnostics expert during the experiments and now associate director of the Office of Science for Fusion Energy Sciences at DOE. "I felt an important shift in the understanding of fusion's likely reality with those experiments."

The breakthroughs proved the practicality of combining equal amounts of the hydrogen isotopes deuterium and its radioactive cousin tritium—the same combination that will be used in ITER and future fusion power plants—to form the superhot, charged plasma gas that fuels fusion reactions. The deuterium-tritium (D-T) mix produced some 150 times more power than a reaction fueled solely by deuterium, long the stand-alone ingredient in tokamak experiments, or "shots."

"This was the first test with equal parts D-T and it was technically quite challenging," said Michael Zarnstorff, a task-force leader during the experiments and now deputy director for research at PPPL. "What we did marked a huge advance in integrating tritium into fusion facilities."

Gained insights included precise measurement of the confinement and loss of alpha particles that fusion reactions release along with energetic neutrons. Good confinement of the alpha particles is critically important since they are to serve as the primary means of heating the plasma in ITER, and thereby producing a self-sustaining fusion reaction, or "burning plasma."

Read more on the PPPL website.


return to the latest published articles