Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Tokamak assembly | Extra support from below

    Underneath the concrete slab that supports the Tokamak Complex is a vast, dimly lit space whose only features are squat, pillar-like structures called 'plinths. [...]

    Read more

  • Vacuum standards and quality | Spreading the word

    As part of a continuing commitment to improve quality culture both at the ITER Organization and at the Domestic Agencies, the Vacuum Delivery & Installation [...]

    Read more

  • Test facility | How do electronics react to magnetic fields?

    A tokamak is basically a magnetic cage designed to confine, shape and control the super-hot plasmas that make fusion reactions possible. Inside the ITER Tokamak [...]

    Read more

  • ITER Robots | No two alike

    More than 500 students took part in the latest ITER Robots challenge. Working from the same instructions and technical specifications, they had worked in teams [...]

    Read more

  • Data archiving | Operating in quasi real time

    To accommodate the first real-time system integrated with the ITER control system, new components of the data archiving system have been deployed. Data archivi [...]

    Read more

Of Interest

See archived entries

Transformer reliability demonstrated in China

The latest tests demonstrate high reliability and strong short circuit withstand capability. (Pictured: the transformer outside the tank for inspection.) (Click to view larger version...)
The latest tests demonstrate high reliability and strong short circuit withstand capability. (Pictured: the transformer outside the tank for inspection.)
Qualification activities for the ITER poloidal field converter package are continuing in China where—in the latest round of successful testing—the prototype of the poloidal field rectifier transformer successfully passed the third phase of routing and type tests.

From 25-28 February the rectifier transformer prototype fabricated by the Xi'an Transformer Co. Ltd (China XD Group) underwent testing in the presence of representatives from the ITER Organization, the Chinese Domestic Agency, the Institute of Plasma Physics at the Chinese Academy of Sciences (ASIPP), and XD in Xi'an. The positive results of this visual examination, following on the heels of recent successful short circuit tests, confirm the suitability of R&D carried out for the poloidal field rectifier transformer prototype.

The rectifier transformer is one of the key prototype components of the ITER poloidal field converter package. With the assistance of ASIPP, ITER China issued the technical requirements for the fabrication and testing of the prototype according to the Procurement Arrangement signed with the ITER Organization in August 2012, and subsequently awarded the contract to the XD Group in December 2012.

The supplier accomplished two procurement milestones in 2013—completing the manufacturing design review in April followed by the fabrication of the prototype—before fulfilling all required tests.

The capability for the large transformer to withstand short circuit current is essential to guaranteeing reliability under the harsh operating conditions of ITER; short circuit test statistics over the past decade have tended to show a very high failure rate (nearly 30 percent). As a key component of the ITER coil power supply system, the test was carried out in full compliance with the latest IEC standards. Several peak current impulses up to 350kA were applied to the transformer and the evolution of winding parameters measured between each current application.


return to the latest published articles