Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryoplant | A vertical displacement event

    Three vertical storage tanks have been installed since last week outside of the cryoplant. The operation requires two powerful cranes working in tandem but also [...]

    Read more

  • Science in Texas | ITER draws enthusiasm

    At its Annual Meeting in Austin, Texas, the American Association for the Advancement of Science, AAAS, invited participants to illustrate how investment in basi [...]

    Read more

  • Image of the week | In the belly of the (flying) whale

    On 15 February, 'Isabelle' and 'Jeanne,' the last of the ten toroidal field coils manufactured in France for the EU-Japan tokamak JT-60SA, were swallowed into t [...]

    Read more

  • Nuclear safety | "A pragmatic and creative approach"

    Safety is at the core of all nuclear activities. Over the past seven decades—since the first experimental reactor was brought to criticality in 1942—codes, stan [...]

    Read more

  • Intellectual property | Modernizing processes and practices

    'A wise man will always allow a fool to rob him of ideas without yelling 'Thief.' If he is wise, he has not been impoverished,' says Ben Hecht in A Child of the [...]

    Read more

Of Interest

See archived articles

Meanwhile, in the stellarator world

John Greenwald, Princeton Plasma Physics Laboratory

The Quasi-Axisymmetric Stellarator Research (QUASAR) experiment represents the first of a new class of fusion reactors based on the innovative theory of quasi-axisymmetry. © PPPL (Click to view larger version...)
The Quasi-Axisymmetric Stellarator Research (QUASAR) experiment represents the first of a new class of fusion reactors based on the innovative theory of quasi-axisymmetry. © PPPL
Completion of a promising experimental facility at the US Department of Energy's Princeton Plasma Laboratory (PPPL) could advance the development of fusion as a clean and abundant source of energy for generating electricity, according to a PPPL paper published this month in the journal IEEE Transactions on Plasma Science.

The facility, called the Quasi-Axisymmetric Stellarator Research (QUASAR) experiment, represents the first of a new class of fusion reactors based on the innovative theory of quasi-axisymmetry, which makes it possible to design a magnetic bottle that combines the advantages of the stellarator with the more widely used tokamak design. Experiments in QUASAR would test this theory. Construction of QUASAR — originally known as the National Compact Stellarator Experiment — was begun in 2004 and halted in 2008 when costs exceeded projections after some 80 percent of the machine's major components had been built or procured.

"This type of facility must have a place on the roadmap to fusion," said physicist George "Hutch" Neilson, the head of the Advanced Projects Department at PPPL.

Both stellarators and tokamaks use magnetic fields to control the hot, charged plasma gas that fuels fusion reactions. While tokamaks put electric current into the plasma to complete the magnetic confinement and hold the gas together, stellarators don't require such a current to keep the plasma bottled up. Stellarators rely instead on twisting — or 3D —magnetic fields to contain the plasma in a controlled "steady state."

Stellarator plasmas thus run little risk of disrupting — or falling apart — as can happen in tokamaks if the internal current abruptly shuts off. Developing systems to suppress or mitigate such disruptions is a challenge that builders of tokamaks like ITER must face.

Read the whole article on PPPL Princeton Journal Watch.


return to the latest published articles