Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Load tests | Heavyweight champion

    The Assembly Hall, with its two giant tools towering 20 metres above ground, is one of the most spectacular locations on the ITER site. When a dummy load weighi [...]

    Read more

  • Fusion's new pioneers | How to go fast enough to make a difference

    Last month in New York, the Stellar Energy Foundation and the Fusion Industry Association co-hosted an invitation-only workshop: 'Roadmap to the Fusion Energy E [...]

    Read more

  • A "magic moment" | Cryostat 60% complete

    When a seafaring vessel is launched, naval tradition requires that a bottle be broken on its hull to invite good luck. Although the ITER cryostat will never tak [...]

    Read more

  • ITER remembers IAEA chief Yukiya Amano

    The ITER Organization has learned with sadness that the three-term Director General of the International Atomic Energy Agency (IAEA), Yukiya Amano, has passed a [...]

    Read more

  • Image of the week | Tokamak-sur-mer

    At the height of the heat wave, in late June, surface temperature on the ITER worksite climbed to the 50 °C range. To continue work—and protect workers—a series [...]

    Read more

Of Interest

See archived entries

Turbulence simulations reveal promising insight for fusion

Argonne National Laboratory

Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of California, Davis; Stephane Ethier, Princeton Plasma Physics Laboratory) (Click to view larger version...)
Simulation of microturbulence in a tokamak fusion device. (Credit: Chad Jones and Kwan-Liu Ma, University of California, Davis; Stephane Ethier, Princeton Plasma Physics Laboratory)
With the potential to provide clean, safe, and abundant energy, nuclear fusion has been called the "holy grail" of energy production. But harnessing energy from fusion, the process that powers the sun, has proven to be an extremely difficult challenge.

Scientists have been working to accomplish efficient, self-sustaining fusion reactions for decades, and significant research and development efforts continue in several countries today.

For one such effort, researchers from the Princeton Plasma Physics Laboratory (PPPL), a DOE collaborative national center for fusion and plasma research in New Jersey, are running large-scale simulations at the Argonne Leadership Computing Facility (ALCF) to shed light on the complex physics of fusion energy. Their most recent simulations on Mira, the ALCF's 10-petaflops Blue Gene/Q supercomputer, revealed that turbulent losses in the plasma are not as large as previously estimated.

This is good news for the fusion research community as plasma turbulence presents a major obstacle to attaining an efficient fusion reactor in which light atomic nuclei fuse together and produce energy. The balance between fusion energy production and the heat losses associated with plasma turbulence can ultimately determine the size and cost of an actual reactor.

"Understanding and possibly controlling the underlying physical processes is key to achieving the efficiency needed to ensure the practicality of future fusion reactors," said William Tang, PPPL principal research physicist and project lead.

Read the whole article on PPPL website


return to the latest published articles