Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Art and ITER | Two sisters, two suns and a monument to fusion

    Amid the gentle slopes of Asciano, Italy, there stands a stone window that frames the Sun on the summer solstice. It looks as though it might have always been t [...]

    Read more

  • Staff | The men and women of ITER

    They hail from Ahmedabad and Prague ... from Naka and Moscow ... from Seoul, Hefei, Atlanta and hundreds of other towns and cities across the 35 nations partici [...]

    Read more

  • ITER Talks | All about ITER and fusion

    Beginning this autumn, the ITER Organization will be launching a new video series to inform, inspire and educate. The first video—introducing the series and off [...]

    Read more

  • Image of the week | A majestic components enters the stage

    The floor of the Assembly Hall is an ever-changing stage. Like characters in a grand production, components of all size and shapes make a spectacular entry, pl [...]

    Read more

  • Magnet system | A set of spares for the long journey

    In about five years, ITER will embark on a long journey through largely uncharted territory. Conditions will be harsh and—despite all the calculations, modellin [...]

    Read more

Of Interest

See archived entries

Chinese team completes prototype for ITER's feeder system

The CTB/SBB vacuum vessel is the largest and heaviest feeder component, with a final, fully loaded weight of 27 tonnes. (Photo courtesy ASIPP) (Click to view larger version...)
The CTB/SBB vacuum vessel is the largest and heaviest feeder component, with a final, fully loaded weight of 27 tonnes. (Photo courtesy ASIPP)
The Chinese Institute of Plasma Physics (ASIPP) has successfully accomplished a full-scale qualification prototype for one of the key components of ITER's magnet feeder system—the vacuum vessel that will provide thermal insulation to the components at the very end of the feeders inside of the Tokamak gallery.

The ITER superconducting magnet system consists of 18 toroidal field coils, 6 poloidal field coils, a central solenoid (6 modules), 18 correction coils, and finally a coil supporting structure. Leading away from the magnets, 31 superconducting magnet feeders will provide connections to the power supplies, the cryogenic plant, and the magnet control and safety units.  Each feeder is made up of an in-cryostat feeder, a cryostat feed-through, and the coil terminal box/S-bend box (CTB/SBB) assembly.

At the end of the feeders, within the Tokamak gallery, are the critical CTB/SBB boxes where electrical power and cryogens are relayed through the warm-cold barrier of the cryostat to ITER's powerful magnets that operate at currents from 10 kA to 68 kA. 

The vacuum vessel will provide thermal insulation for the hundreds of encapsulated cryogenic components that are part of the coil terminal box and S-bend boxes. (Photo courtesy ASIPP) (Click to view larger version...)
The vacuum vessel will provide thermal insulation for the hundreds of encapsulated cryogenic components that are part of the coil terminal box and S-bend boxes. (Photo courtesy ASIPP)
A protective vacuum vessel will provide thermal insulation for hundreds of encapsulated cryogenic components that are part of the boxes such as a 80K thermal shield, high temperature superconducting current leads, superconducting busbars, cryogenic coolant circuits with control/safety valves, cold sensors and signal cables, and cold mechanical supports (see diagram). The CTB/SBB vacuum vessel is thus the largest (8m×1.3m×1.5m) and heaviest (18 t) feeder component. The final weight of a fully loaded CTB/SBB, vacuum vessel included, is 27 tonnes.

Double-torch automatic MIG welding performed at ASIPP. (Photo courtesy ASIPP) (Click to view larger version...)
Double-torch automatic MIG welding performed at ASIPP. (Photo courtesy ASIPP)
In order to meet ITER's stringent quality requirements, the Chinese manufacturer conducted a series of welding trials and assessments and submitted as many as 82 quality documents to the ITER Organization. A number of experts and certified third-party inspectors were invited by the ITER Organization to witness different stages of key welding processes as well as vacuum leak checking, non-destructive testing, and large component measurements.

The successful realization of the full-scale qualification CTB/SBB vacuum vessel prototype is a significant accomplishment within the scope of the Magnet Feeder Procurement Arrangement. The experience gained in this prototype qualification has laid a solid foundation for the high quality series production ahead. The qualified component will now be used at ASIPP to provide the necessary vacuum environment for the downstream cryogenic qualification tests of the 80K thermal shield and the high temperature superconducting current lead prototypes, as well as the full-size mockups of the S-bend busbars with high voltage insulation.


return to the latest published articles