Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Plasma physics | Be clean, be strong

    To achieve maximum fusion efficiency in a tokamak device it is essential to limit the impurities in the plasma. But this can be a challenge, as interaction betw [...]

    Read more

  • Coil power supply | Switching network tested in Russia

    Plasma could not be created in the ITER vacuum vessel without switching network units, whose operation creates the voltage that 'ionizes*' the cloud of fuel ato [...]

    Read more

  • Star struck | For Silicon Valley philanthropist ITER is "the only way"

    One is planning to send tiny spacecrafts to the nearest stellar system; the other aims to bring the power of the stars to Earth. Yuri Milner, Russian-born entre [...]

    Read more

  • Cryogenics | How low can you go?

    The realm of the extremely cold is fascinating. Temperatures driving toward absolute zero, 'steaming' cryogenic liquids and hovering magnets create an air of ma [...]

    Read more

  • Stakeholders | Europe's vote of confidence

    The bottom line is always what matters. For the statement issued on Thursday 12 April by the European Council of Ministers, the key phrase was in the final poin [...]

    Read more

Of Interest

See archived articles

Design phase concludes for ITER rectangular bellows

Igor Sekachev, Cryostat and VVPSS Section

At the Swiss firm Kompaflex, where the water pressure test on the full-size rectangular bellows prototype was successfully carried out: Guillaume Vitupier and Igor Sekachev from ITER (front row) and the Kompaflex team: Werner Löhrer, CEO (centre); Remo Hribernigg, project leader; Bairush Ajeti, expediting; Antonio Coelho Soares, certified welder; and Markus Kaltenhauser, head of engineering. (Click to view larger version...)
At the Swiss firm Kompaflex, where the water pressure test on the full-size rectangular bellows prototype was successfully carried out: Guillaume Vitupier and Igor Sekachev from ITER (front row) and the Kompaflex team: Werner Löhrer, CEO (centre); Remo Hribernigg, project leader; Bairush Ajeti, expediting; Antonio Coelho Soares, certified welder; and Markus Kaltenhauser, head of engineering.
Testing has ended on a full-scale, rectangular bellows prototype at the Swiss firm Kompaflex (kompaflex ag), successfully completing the last step in the bellows design.

Eighty-five large, rectangular bellows will be used between the ITER vacuum vessel, the cryostat and the walls of the Tokamak Building themselves to isolate the ultra-high vacuum inside the cryostat from the building port cell environment, and to compensate relative movement that can occur during different operational regimes like baking of the vacuum vessel, or during seismic events.

On 27 August, a 3.2 x 3.6 metre prototype of the upper port duct bellows successfully passed pressure stability tests. Even in the case of the largest required pressure of 0.6.bar across the bellows—only predictable elastic deformation of the bellows was caused and following pressure relief, the bellow convolutions returned to their initial position. Only at 1bar pressure across the bellows the first small plastic deformations of 2mm were detected, which showed significant design margin to the pressure requirements.

The fatigue life test of the bellows was also successfully completed. Kompaflex has the capacity to produce a multi-ply rectangular construction of bellows without welding seams in the corner area, fulfilling ITER's requirement for very short building length, enormous movements in combination with a certain number of cycles, and low spring rates. A rectangular bellows with a very short convoluted length was tested for an axial movement range of 136 mm and the requested number of 500 cycles was fulfilled without any damage.

After completion of the design work on the bellows end connections, the Final Design Review for the rectangular bellows is scheduled for April 2015. The signature of the Procurement Arrangement will follow.


return to the latest published articles