Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Tokamak cooling system | Final design achieved

    To remove the heat from the components closest to the plasma, the tokamak cooling water system will rely on over 36 kilometres of nuclear-grade piping and fitti [...]

    Read more

  • Worksite progress | Spot the differences

    Let's play the "spot the differences" game between these two general views of the ITER site, one taken last Thursday 18 January, the other three month [...]

    Read more

  • Inventions | Where have all the neutrons gone?

    It is not unusual in the course of a work day at the world's largest scientific experiment to rely on creativity to resolve the challenge at hand. But less comm [...]

    Read more

  • Neutral beam test facility | Europe delivers first-of-a-kind equipment

    Tullio Bonicelli, in charge of Europe's contributions to the ITER neutral beam heating system, calls them "beyond state-of-the-art components." The hi [...]

    Read more

  • Vacuum vessel | First segment completed in Korea

    The technically challenging fabrication of the ITER vacuum vessel is progressing in Korea, where Hyundai Heavy Industries has completed the first poloidal segme [...]

    Read more

Of Interest

See archived articles

Design phase concludes for ITER rectangular bellows

Igor Sekachev, Cryostat and VVPSS Section

At the Swiss firm Kompaflex, where the water pressure test on the full-size rectangular bellows prototype was successfully carried out: Guillaume Vitupier and Igor Sekachev from ITER (front row) and the Kompaflex team: Werner Löhrer, CEO (centre); Remo Hribernigg, project leader; Bairush Ajeti, expediting; Antonio Coelho Soares, certified welder; and Markus Kaltenhauser, head of engineering. (Click to view larger version...)
At the Swiss firm Kompaflex, where the water pressure test on the full-size rectangular bellows prototype was successfully carried out: Guillaume Vitupier and Igor Sekachev from ITER (front row) and the Kompaflex team: Werner Löhrer, CEO (centre); Remo Hribernigg, project leader; Bairush Ajeti, expediting; Antonio Coelho Soares, certified welder; and Markus Kaltenhauser, head of engineering.
Testing has ended on a full-scale, rectangular bellows prototype at the Swiss firm Kompaflex (kompaflex ag), successfully completing the last step in the bellows design.

Eighty-five large, rectangular bellows will be used between the ITER vacuum vessel, the cryostat and the walls of the Tokamak Building themselves to isolate the ultra-high vacuum inside the cryostat from the building port cell environment, and to compensate relative movement that can occur during different operational regimes like baking of the vacuum vessel, or during seismic events.

On 27 August, a 3.2 x 3.6 metre prototype of the upper port duct bellows successfully passed pressure stability tests. Even in the case of the largest required pressure of 0.6.bar across the bellows—only predictable elastic deformation of the bellows was caused and following pressure relief, the bellow convolutions returned to their initial position. Only at 1bar pressure across the bellows the first small plastic deformations of 2mm were detected, which showed significant design margin to the pressure requirements.

The fatigue life test of the bellows was also successfully completed. Kompaflex has the capacity to produce a multi-ply rectangular construction of bellows without welding seams in the corner area, fulfilling ITER's requirement for very short building length, enormous movements in combination with a certain number of cycles, and low spring rates. A rectangular bellows with a very short convoluted length was tested for an axial movement range of 136 mm and the requested number of 500 cycles was fulfilled without any damage.

After completion of the design work on the bellows end connections, the Final Design Review for the rectangular bellows is scheduled for April 2015. The signature of the Procurement Arrangement will follow.


return to the latest published articles