Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Without minimizing challenges, Council reaffirms commitment

    On 24 October 2007, the ITER Organization was officially established following the ratification by the seven ITER Members of the project's constitutive document [...]

    Read more

  • Heat waves

    Plasma is like a tenuous mist of particles—light atoms that have been dissociated into ions (the atom nucleus) and free-roaming electrons. In order to study pla [...]

    Read more

  • What a difference ten days make

    There was a time when progress in Tokamak Complex construction was easy to follow.Excavation in 2010; the creation of the ground support structure and seismic f [...]

    Read more

  • What's in the box?

    At ITER, even the opening of a box takes on a spectacular dimension. The operation requires a powerful crane, a full team of specialists and, as everything ITER [...]

    Read more

  • EU Commission has "positive appreciation" of ITER progress

    On 14 June, the European Commission issued a Communication presenting the revised schedule and budget estimates for European participation in ITER. Its object? [...]

    Read more

Of Interest

See archived articles

Diagnostic first wall passes review

-Angela Saenz, Systems Management Section

The diagnostic first walls, weighing up to 2 tonnes, protect the diagnostic instruments from thermal loads, neutron damage, coating by dust and metallic vapour deposition. (Click to view larger version...)
The diagnostic first walls, weighing up to 2 tonnes, protect the diagnostic instruments from thermal loads, neutron damage, coating by dust and metallic vapour deposition.
From 8-9 December 2014, years of effort and international collaboration paid off as the Final Design Review for the diagnostic first wall was successfully held at ITER Headquarters.

ITER diagnostics will be housed within massive port plugs—stainless steel blocks weighing up to 45 metric tons (for equatorial ports) that "plug" openings in the vacuum vessel. At the equatorial (middle) and upper levels, at least 18 port plugs will be customized to receive diagnostic instruments that will measure plasma temperature, density, radiative properties and first-wall resilience. These sensitive diagnostic instruments need protection from thermal loads, neutron damage, coating by dust and metallic vapour deposition; for this purpose, a diagnostic first wall is installed on the port plugs.

The Final Design Review focused on design aspects that are common to all diagnostic first walls. With a total of 108 pages each, the design reports carefully went over the design requirements, the detailed geometry, and the manufacturing studies of the equatorial and upper port diagnostic first walls that were felt to reflect a wide range of diagnostic first wall configurations. In addition, all the basic configurations and common features were evaluated to allow extrapolation, later on, to specific diagnostic first walls.

The joint efforts of the ITER Diagnostics team and the Princeton Plasma Physics Laboratory—working under a design Task Agreement signed between the ITER Organization and the US Domestic Agency—concluded with a successful Final Design Review and a team commendation during the ITER Recognition Ceremony held in December. The members of the team are Victor Udintsev, Thibaud Giacomin, Julio Guirao, Christian Vacas and Silvia Iglesias from the ITER Organization and Douglas Loesser, Mark Smith and Yuhu Zhai from the Princeton Plasma Physics Laboratory.


return to the latest published articles