Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • 31st ITER Council | Addressing challenges

    The project's governing body, the ITER Council, convened for the 31st time in its history on 16 and 17 November to evaluate the progress of construction, m [...]

    Read more

  • Machine assembly | Key components to be repaired

    When building a machine as large and as complex as ITER, difficulties and setbacks do not come as surprises—they are an integral part of manufacturing, assembli [...]

    Read more

  • Space management | Optimizing every square metre

    Building management is a constant challenge at ITER. The American statesman Ben Franklin is credited with saying that a successful organization requires 'a plac [...]

    Read more

  • Radio Frequency Building | Installing the first power supply sets

    When the plasma in the ITER vacuum vessel is fed sufficient power, the velocity that the particles acquire causes them to collide, fuse and generate considerabl [...]

    Read more

  • Fusion history | H-mode, the discovery that made ITER possible

    Forty years ago, the scientists in the ASDEX tokamak control room at the Max Planck Institute for Plasma Physics (IPP) in Germany sat up straight. Somethin [...]

    Read more

Of Interest

See archived entries

The plasma starter

Each of ITER's 24 gyrotrons will generate a microwave beam over a thousand times more powerful than a traditional microwave oven. Last month, Japan presented an advanced gyrotron design to an international team of experts and representatives from the ITER Organization. (Click to view larger version...)
Each of ITER's 24 gyrotrons will generate a microwave beam over a thousand times more powerful than a traditional microwave oven. Last month, Japan presented an advanced gyrotron design to an international team of experts and representatives from the ITER Organization.
About ten years from now, a signal from the ITER Control Room will trigger the operation of eight gyrotrons. Each gyrotron will generate a microwave beam over a thousand times more powerful than a traditional microwave oven.

These microwave beams will travel along 160 metres of waveguide and then launch into the ITER Tokamak to ionize the neutral gas and generate the very first ITER plasma, in much the same way that a spark plug ignites your car motor. The eight gyrotrons in place for ITER's First Plasma will be joined by sixteen others to initiate every plasma during operation, as well as provide heating to the plasma, drive current, and stabilize plasma instabilities.

Russia developed the first gyrotron back in 1964, generating 6W at 10GHz for continuous operation. Since then, scientists around the world have steadily increased gyrotron output power, which now approaches 2MW.

The Japan Atomic Energy Agency, in collaboration with Toshiba, manufactured the first gyrotron to demonstrate 1MW for >400 s, compatible with ITER requirements of 2006. Last month, an advanced gyrotron design was presented to an international team of experts and representatives from the ITER Electron Cyclotron Section and interfacing areas. Of four contributing parties to the 24 ITER gyrotrons (Japan, Russia, Europe, and India), Japan is the first to present its gyrotron at the final design stage. (Final design reviews for the others are planned shortly.)

The Japanese Domestic Agency Final Design Review panel included electron cyclotron scientists from the DIII-D tokamak (US), the Large Helical Device (LHD, Japan) and the ASDEX-Upgrade tokamak (Germany) along with representatives of the ITER Organization. The other Domestic Agencies involved with gyrotron development were also present at the review meeting. The panel assessed the Japanese design as mature and issued no category 1 chits.

This first Final Design Review in Japan concentrated on the gyrotron tube and assembly; a second is planned to focus on the interface with the high voltage power supply and related devices. In 2015, the Japanese Domestic Agency expects to initiate the call for tender procedure for the manufacturing of the first two gyrotrons, which will arrive on the ITER site in early 2018. These gyrotrons will then be integrated with high voltage power supplies (procured by India and Europe), transmission lines (procured by the US), and launchers (procured by Japan and Europe).


return to the latest published articles