Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • On site | 28 who "truly shined"

    The new ITER Star Awards recognize exemplary performance and commitment. Every year, during the annual assessment campaign, ITER staff may be recognized for exe [...]

    Read more

  • MT-28 Conference | Superconducting magnets as a catalyst

    Many passers-by paused for a moment and picked up their cell phones to capture the scene. It was indeed rare to see dancers on the square outside of the Pavillo [...]

    Read more

  • Fusion world | TCV tokamak turns 30

    The Swiss TCV tokamak (for Tokamak à Configuration Variable, or 'variable configuration' tokamak) has been exploring the physics of nuclear fusion for 30 years [...]

    Read more

  • Image of the week | Port cell with a view

    A visit to ITER would not be complete without a peek into the Tokamak pit where the machine is being progressively assembled. For several years, one of the equa [...]

    Read more

  • Visit | Chinese Minister reaffirms "full support"

    ITER Director-General Pietro Barabaschi and the Chinese Minister of Science and Technology (MOST) Wang Zhigang share a common academic background. They both tra [...]

    Read more

Of Interest

See archived entries

Record plasma fluence exposure in UC San Diego test stand

The retention measurements are plotted at the right against the database contained in an MIT report (#PSFC/RR-10-4) which addresses this issue. Also evident in the plot is that the high plasma flux achievable in PISCES-B (1.5 × 1023 m-2s-1) results in a lower level of retention, compared to the data contained in the MIT report which were collected under lower flux conditions. (Click to view larger version...)
The retention measurements are plotted at the right against the database contained in an MIT report (#PSFC/RR-10-4) which addresses this issue. Also evident in the plot is that the high plasma flux achievable in PISCES-B (1.5 × 1023 m-2s-1) results in a lower level of retention, compared to the data contained in the MIT report which were collected under lower flux conditions.
The PISCES-B device, located at the University of California San Diego (US), is a linear plasma test stand whose mission is to examine plasma-materials interactions for ITER and future DEMO devices.

In late 2014, PISCES-B was used for a series of high-fluence plasma exposures to investigate the deuterium fuel retention properties of tungsten when exposed to continuous plasma bombardment. The goal was to determine whether the fuel retention in the tungsten saturates with fluence, or continues to increase as a function of the plasma exposure time.

The deuterium particle fluence was varied by almost three orders of magnitude with the maximum deuterium atom fluence being 2 × 1028 m-2. To achieve the maximum fluence exposure, the PISCES-B device was run continuously for over 30 hours, reaching a fluence equivalent to 50 full-power 400-second ITER deuterium-tritium plasma pulses.

The experiment demonstrates the ability of linear plasma devices to operate in true steady state and to provide a test platform which can replicate plasma-material interaction conditions relevant to future DEMO reactors.

During pure deuterium plasma exposure, retention results indicate that saturation is not reached and that retention scales as the square root of time, indicative of diffusion dominating the fuel uptake of the tungsten.

The retention measurements are plotted in the graph at right against the database contained in an MIT report (#PSFC/RR-10-4) which addresses this issue. Also evident in the plot is that the high plasma flux achievable in PISCES-B (1.5 × 1023 m-2s-1) results in a lower level of retention, compared to the data contained in the MIT report which were collected under lower flux conditions.

However, measurements performed while sculpting the PISCES plasma to replicate a burning plasma, by adding a small amount (5 percent) of helium to the incident deuterium plasma, indicate the deuterium uptake in the target is severely inhibited. The diffusion barrier provided naturally by the helium ash contained in a burning plasma could alleviate many tritium-related concerns in future fusion reactors with tungsten plasma-facing materials.


return to the latest published articles