Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cross-sector advocacy | The fusion knights

    Developing fusion as a usable energy source requires an all-hands-on-deck approach. At last week's ITER workshop, fusion advocacy organizations showed the role [...]

    Read more

  • Knowledge dissemination | ITER enters a shared-information era

    Workshop lays groundwork to provide vast amounts of ITER research and expertise to fusion companies. As ITER embarks on an ambitious initiative to accelerate th [...]

    Read more

  • Private Sector Workshop | "How can ITER help?"

    There are many ways to approach the harnessing of fusion energy: one is to optimize or simplify existing concepts; another is to exhume long-abandoned solut [...]

    Read more

  • Fusion codes and standards | "Consistency will accelerate global innovation"

    The development of commonly agreed codes and standards for fusion goes right to the heart of ITER's vision of collaboration, recognizing the exceptional dynamis [...]

    Read more

  • Industrial ecosystem | Suppliers see growing opportunities

    A diverse group of suppliers described their roles in a growing ecosystem around nuclear fusion and shared their vision of the future. The quest for fusion brin [...]

    Read more

Of Interest

See archived entries

Improving the "gold standard" of plasma behaviour

Schematic of the NSTX tokamak at PPPL with a cross-section showing perturbations of the plasma profiles caused by instabilities. Without instabilities, energetic particles would follow closed trajectories and stay confined inside the plasma (blue orbit). With instabilities, trajectories can be modified and some particles may eventually be pushed out of the plasma boundary and lost (red orbit). Image by Mario Podestà. (Click to view larger version...)
Schematic of the NSTX tokamak at PPPL with a cross-section showing perturbations of the plasma profiles caused by instabilities. Without instabilities, energetic particles would follow closed trajectories and stay confined inside the plasma (blue orbit). With instabilities, trajectories can be modified and some particles may eventually be pushed out of the plasma boundary and lost (red orbit). Image by Mario Podestà.
The gold standard for modelling the behaviour of fusion plasmas may have just gotten better. Mario Podestà, a staff physicist at the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL), has updated the worldwide computer program known as TRANSP to better simulate the interaction between energetic particles and instabilities—disturbances in plasma that can halt fusion reactions.

The program's updates, reported this week in Nuclear Fusion, could lead to improved capability for predicting the effects of some types of instabilities in future facilities such as ITER.

Podestà and co-authors saw a need for better modelling techniques when they noticed that while TRANSP could accurately simulate an entire plasma discharge, the code wasn't able to represent properly the interaction between energetic particles and instabilities. The reason was that TRANSP, which PPPL developed and has regularly updated, treated all fast-moving particles within the plasma the same way. Those instabilities, however, can affect different parts of the plasma in different ways through so-called "resonant processes."

The authors first figured out how to condense information from other codes that do model the interaction accurately—albeit over short time periods—so that TRANSP could incorporate that information into its simulations. Podestà then teamed up with TRANSP developer Marina Gorelenkova at PPPL to update a TRANSP module called NUBEAM to enable it to make sense of this condensed data. "Once validated, the updated module will provide a better and more accurate way to compute the transport of energetic particles," said Podestà. "Having a more accurate description of the particle interactions with instabilities can improve the fidelity of the program's simulations."

Read the full article on the PPPL website.


return to the latest published articles