Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Technology | ITER-like disruption mitigation at KSTAR

    Two weeks ago at the Korean tokamak KSTAR, the technology chosen for disruption mitigation at ITER—shattered pellet injection—was tested for the first time in a [...]

    Read more

  • Cooling system | From river to droplets and mist

    A subterranean river runs through the ITER installation. Rushing through 60 kilometres of piping, passing through dozens of pumps, filters and heat exchangers a [...]

    Read more

  • Image of the week | How quickly it goes!

    There are many challenges in communicating ITER and one is to keep pace (from a visual point of view) with the progress of the Tokamak Building. Since this pi [...]

    Read more

  • FEC2020 | Seeking sponsors for 28th IAEA Fusion Energy Conference

    For only the third time since 1961, the International Atomic Energy Agency's Fusion Energy Conference will be taking place in France—hosted jointly by the Frenc [...]

    Read more

  • Nuclear safety | Under constant scrutiny

    Because one of the elements involved in the fusion reaction is the radioactive isotope tritium, and because the hydrogen fusion reaction itself generates a high [...]

    Read more

Of Interest

See archived entries

Russian gyrotron prototype passes acceptance tests

Alex Petrov, ITER Russia

For ITER, gyrotron technology will be pushed to the limit, with output beams of 1 MW (for 1000 sec) at the required 170 GHz. (Click to view larger version...)
For ITER, gyrotron technology will be pushed to the limit, with output beams of 1 MW (for 1000 sec) at the required 170 GHz.
Another milestone has been recorded in the Russian development program for the ITER gyrotrons—the 24 energy-generating units that will inject powerful microwave beams into the vacuum vessel to heat the plasma and drive plasma current.

At the industrial complex of Gycom Ltd in Nizhny Novgorod, the Russian gyrotron prototype successfully passed factory acceptance tests in the presence of ITER Organization representatives. The promising results will open the way to series production once the final design review will be successfully closed. The Russian Domestic Agency will supply 8 of ITER's 24 gyrotrons.

The tests, which took place from 11 to 15 May, are a key element in the procurement of the Russian gyrotron that will allow Russian industry to begin the fabrication of this important ITER system. The official factory acceptance tests have to verify key parameters of the prototype, including output beam characteristics, power parameters (>0.95 MW), efficiency (exceeding 50 percent), modulation regimes (1-5 kHz), and durability parameters (>95 percent); test control and parameter registration; and confirm the main technical solutions for the system. Most of these parameters were successfully monitored during these tests, aiming to consolidate the series gyrotron factory acceptance test program and allowing the preparation of the Final Design Review with full confidence.

According to the ITER schedule, Russian-fabricated gyrotrons will be the first to be delivered to ITER. (Click to view larger version...)
According to the ITER schedule, Russian-fabricated gyrotrons will be the first to be delivered to ITER.
The first gyrotron was developed at the Russian Applied Physics Institute (Nizhny Novgorod) in 1964. For ITER, gyrotron technology will be pushed to the limit, with output beams of 1 MW (for 1000 sec) at the required 170 GHz. Four ITER Members—Europe, Japan, Russia and India—are involved in gyrotron procurement. According to the ITER schedule, Russian-fabricated gyrotrons will be the first to be delivered to ITER. 

The development of the Russian gyrotron has been carried out with the cooperation of the Russian Domestic Agency for ITER, the Institute of Applied Physics (Russian Academy of Sciences), Gycom Ltd., the Kurchatov Institute, and CJSC RTSoft.

News from the Japanese and European gyrotron development programs was recently reported in Newsline.



return to the latest published articles