Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • The physics behind the transition to H-mode

    H‐mode—or thesudden improvement of plasma confinement in the magnetic field of tokamaksby approximatelya factor of two—is thehigh confinement regime that all mo [...]

    Read more

  • In search of the green plasma

    Sébastien König's core competence is in planning and scheduling; his passion is in understanding the workings of the Universe. In his previous life, before join [...]

    Read more

  • An outing into the future

    Open Doors days occur with scientific regularity at ITER (spring and autumn) and yet—due to the rapid evolution of work on site—each event offers something new. [...]

    Read more

  • Fusion "grandfather" tells family story

    Grandfathers like to tell stories. And Robert Aymar, the 'grandfather' of the French fusion community, is no exception. 'Being so old,' he quipped at last week' [...]

    Read more

  • An AC/DC adapter ... ITER size

    Like flashlight and smartphones, the ITER magnets—all 10,000 tonnes of them—will run on direct current (DC). And like flashlight and smartphones they will need [...]

    Read more

Of Interest

See archived articles

Naka checks ITER heartbeat

-Lynne Degitz, US ITER

The insert coil is lowered into the test facility at Naka, Japan. Photo: JAEA (Click to view larger version...)
The insert coil is lowered into the test facility at Naka, Japan. Photo: JAEA
In another step towards building the ITER fusion reactor, the US ITER team has worked with international partners to verify the performance of the ITER central solenoid conductor. Using a US-designed "insert coil" (a test coil inserted in a large, high-field magnet), the international team tested the Japanese-manufactured central solenoid conductor at the Japan Atomic Energy Agency test facility in Naka and evaluated the findings. Results showed that the conductor performed as predicted, without degradation.

The ITER central solenoid is under fabrication in the US at a General Atomics facility in Poway, California using conductor provided by Japan. The 1,000-metric-ton electromagnet, known as the "heartbeat" of ITER, will provide the majority of the magnetic flux needed to start and sustain ITER's plasma current. Over 42 kilometres of conductor will ultimately be wound into pancakes and assembled into the modules of the central solenoid. The electromagnet will have a magnetic field strength of up to 13 Tesla, or about 260,000 times the Earth's magnetic field.

"The testing in Naka verified conductor performance under conditions comparable to what the conductor will experience inside the ITER Tokamak—including temperature, magnetic field, current, and mechanical strain," said US ITER magnet team leader Wayne Reiersen.

Testing conductor before it is installed in the ITER machine is part of confirming the ITER design and assuring that the conductor will perform in the demanding ITER environment. ITER, which will be the largest tokamak ever built, will employ multiple superconducting magnet systems to confine plasma of over 100 million degrees within a vacuum vessel inside the 10-story-tall tokamak.

Read the full report of the test results on the US ITER website.


return to the latest published articles