Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Challenges | Managing risk in a first-of-a-kind project

    The classic approach to project management is to group risks into three separate categories. The first consists of known risks, the second of unknown risks, and [...]

    Read more

  • Steve Cowley | Projecting into the coming decades

    Steven Cowley, who now heads the Princeton Plasma Physics Laboratory (PPPL), gave a seminar last week at CEA-Cadarache and he had some good news regarding the s [...]

    Read more

  • Outreach | What vacuum does to marshmallows

    Every year in France, science is "à la fête" for two consecutive weekends in October. Free events and demonstrations—tailored particularly to school-a [...]

    Read more

  • Physics | 11th ITER International School announced

    The 11th ITER International School will be held from 20 to 24 July 2020, hosted by Aix-Marseille University in Aix-en-Provence, France. The subject of this year [...]

    Read more

  • Image of the week | An anniversary in blue, white and red

    ITER neighbour and close partner in fusion research, the CEA-Cadarache nuclear research centre, was established in October 1959. This week, it celebrated the 60 [...]

    Read more

Of Interest

See archived entries

Controlling ITER with fuellers, ticklers, and terminators

Leo Williams, Oak Ridge National Laboratory

The inside of a pellet selector, which directs pellets to different outputs in a fusion reactor. Photo: ORNL (Click to view larger version...)
The inside of a pellet selector, which directs pellets to different outputs in a fusion reactor. Photo: ORNL
When it's up and running, the ITER fusion reactor will be very big and very hot, with more than 800 m³ of hydrogen plasma reaching 170 million °C. The systems that fuel and control it, on the other hand, will be small and very cold.
 
Pellets of frozen gas will be shot into the plasma—some to keep it fuelled, some to manage plasma activity, and some to extinguish the plasma as needed.
 
The idea of using frozen pellets to fuel a magnetic fusion reactor is not new. Researchers with the Fusion Materials and Nuclear Systems Division at Oak Ridge National Lab (ORNL) have been working on the technology for 35 years. Their handiwork helps run fusion experiments across the world, including America's largest fusion reactor, the DIII-D tokamak operated by General Atomics in San Diego, California.
 
Their expertise also made them the right choice to take on the much more challenging job of controlling ITER, which is more than eight times larger than the largest fusion reactor now in existence.
 
"The pellets are much more efficient at fuelling the fusion plasma because they can penetrate fairly deep into the hot plasma before being ablated and ionized into additional plasma," explained Larry Baylor of ORNL's Plasma Technology and Applications Group.
 
"The alternative method of injecting gas that is primarily used in today's smaller devices will not add fuel efficiently in ITER because of its large size and high magnetic field."
 
Baylor said his group is working on three types of pellet, which he refers to as fuellers, ticklers, and terminators.
 
Continue reading the article on the ORNL website.


return to the latest published articles