Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • 23rd ITER Council | Pace and performance on track

    Working as an integrated team, the ITER Organization and seven Domestic Agencies are continuing to meet the project's demanding schedule to First Plasma in 2025 [...]

    Read more

  • Fusion Doctors | ITER hosts the future

    For three days last week, the ITER building was brimming with energy, inspiration and enthusiasm. One hundred and thirty-five young fusion aficionados took over [...]

    Read more

  • Fusion world | What's next for the stellarator?

    Earlier this year, the Wendelstein 7-X stellarator fusion project reported record achievements from its most recent experimental campaign. Newsline spoke with t [...]

    Read more

  • Metrology and the ITER machine | Perfectly planned points

    Inside of the Tokamak Complex, a network of 2,000 small 'fiducial target nests' will provide the reference datum for the dimensional control and alignment of ma [...]

    Read more

  • Breaking news | First component installed next week

    In the third week of November, the ITER Organization will be installing the first component of the machine in the basement of the Tokamak Building. The 10-met [...]

    Read more

Of Interest

See archived entries

Controlling ITER with fuellers, ticklers, and terminators

Leo Williams, Oak Ridge National Laboratory

The inside of a pellet selector, which directs pellets to different outputs in a fusion reactor. Photo: ORNL (Click to view larger version...)
The inside of a pellet selector, which directs pellets to different outputs in a fusion reactor. Photo: ORNL
When it's up and running, the ITER fusion reactor will be very big and very hot, with more than 800 m³ of hydrogen plasma reaching 170 million °C. The systems that fuel and control it, on the other hand, will be small and very cold.
 
Pellets of frozen gas will be shot into the plasma—some to keep it fuelled, some to manage plasma activity, and some to extinguish the plasma as needed.
 
The idea of using frozen pellets to fuel a magnetic fusion reactor is not new. Researchers with the Fusion Materials and Nuclear Systems Division at Oak Ridge National Lab (ORNL) have been working on the technology for 35 years. Their handiwork helps run fusion experiments across the world, including America's largest fusion reactor, the DIII-D tokamak operated by General Atomics in San Diego, California.
 
Their expertise also made them the right choice to take on the much more challenging job of controlling ITER, which is more than eight times larger than the largest fusion reactor now in existence.
 
"The pellets are much more efficient at fuelling the fusion plasma because they can penetrate fairly deep into the hot plasma before being ablated and ionized into additional plasma," explained Larry Baylor of ORNL's Plasma Technology and Applications Group.
 
"The alternative method of injecting gas that is primarily used in today's smaller devices will not add fuel efficiently in ITER because of its large size and high magnetic field."
 
Baylor said his group is working on three types of pellet, which he refers to as fuellers, ticklers, and terminators.
 
Continue reading the article on the ORNL website.


return to the latest published articles