Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • ITER DNA | A "case" study...

    In December last year, and again this year in early May, pre-welding fitting tests demonstrated that steel components as tall as a four-storey building (and wei [...]

    Read more

  • First plasma| Temporary in-vessel protection

    The vacuum vessel, the operating theatre of the ITER machine, needs to be protected against possible damage from the hot plasma at any given time during its ope [...]

    Read more

  • Divertor cassettes | Successful prototypes open way to series

    Before embarking on the fabrication of the 54 complex steel structures that will form a ring at the bottom of the ITER machine—the divertor cassettes—the Europe [...]

    Read more

  • Images of the week | Titan tool 90 percent complete

    Towering 22 metres above ground and weighing approximately 800 tonnes, the twin sector sub-assembly tools (SSAT) are formidable handling machines that will be u [...]

    Read more

  • Video | How does the ITER cryoplant work?

    Cold is essential to ITER—10,000 tonnes of superconducting magnets, the thermal shield that surrounds the machine, the cryopumps that achieve the high vacuum in [...]

    Read more

Of Interest

See archived articles

Turning the tables on turbulence

Culham Centre for Fusion Energy, CCFE

Image of plasma fluctuations in the MAST divertor, showing where the filaments are brightest and instabilities are strongest. (Click to view larger version...)
Image of plasma fluctuations in the MAST divertor, showing where the filaments are brightest and instabilities are strongest.
Plasma turbulence has been the bane of fusion scientists for decades. But now they're getting their own back—images of plasma inside the MAST tokamak at Culham are showing how turbulence could actually tackle one of the hottest issues in fusion reactor design.

Plasma is a fascinating but frustrating fact of life for researchers developing fusion energy. The fourth state of matter, despite making up most of the universe, still holds many secrets for Earth-bound physicists. Controlling this incredibly hot ionised gas in a magnetic field within a tokamak is a proven way of triggering fusion reactions, but the downside is that the plasma becomes turbulent and unstable, making it difficult to confine—analogous to the creation of blobs in a lava lamp, or the break-up of clouds in the sky.

The MAST videos provide the closest view yet of plasma in the tokamak's exhaust system, the divertor, and may hold the key to dealing with the intense heat ejected from the fusion chamber onto surrounding surfaces. This is a major concern for researchers designing full-scale tokamak power plants.

The divertor, made from extremely tough materials, acts as a target for the waste plasma, and pumps helium ash and impurities out of the tokamak. But in a fusion power plant the divertor will be exposed to power loads of tens of megawatts per square metre (many times greater than a spacecraft re-entering the atmosphere), putting a strain on even the toughest of structures.

Continue reading on the CCFE website


return to the latest published articles