Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Heating | A pinch of moondust in the ITER plasma

    One day in the distant future, fusion plants might be fuelled by helium 3—an isotope that is extremely scarce on Earth but reputed to be abundant on the Moon. B [...]

    Read more

  • Delivery | 2,000 km through canals, locks and tunnels

    When the thruway is closed, one takes the back roads. And when it's low-water season on the Rhine-Rhône canal, a barge leaving Switzerland for the Mediterranean [...]

    Read more

  • Monaco Fellows | A hand in shaping ITER

    For the sixth time, ITER is welcoming a group of five young researchers as part of the Monaco-ITER postdoctoral fellowship scheme. Working alongside experienced [...]

    Read more

  • On site | Drone survey on a perfect day

    There are days in winter when the skies over Provence are perfectly transparent. Snowy peaks 200 kilometres away appear close enough to be touched and farms, co [...]

    Read more

  • AAAS conference | ITER on the world science stage

    With more than 120,000 members globally, the American Association for the Advancement of Science (AAAS) is billed as the world's largest scientific society. The [...]

    Read more

Of Interest

See archived entries

Turning the tables on turbulence

Culham Centre for Fusion Energy, CCFE

Image of plasma fluctuations in the MAST divertor, showing where the filaments are brightest and instabilities are strongest. (Click to view larger version...)
Image of plasma fluctuations in the MAST divertor, showing where the filaments are brightest and instabilities are strongest.
Plasma turbulence has been the bane of fusion scientists for decades. But now they're getting their own back—images of plasma inside the MAST tokamak at Culham are showing how turbulence could actually tackle one of the hottest issues in fusion reactor design.

Plasma is a fascinating but frustrating fact of life for researchers developing fusion energy. The fourth state of matter, despite making up most of the universe, still holds many secrets for Earth-bound physicists. Controlling this incredibly hot ionised gas in a magnetic field within a tokamak is a proven way of triggering fusion reactions, but the downside is that the plasma becomes turbulent and unstable, making it difficult to confine—analogous to the creation of blobs in a lava lamp, or the break-up of clouds in the sky.

The MAST videos provide the closest view yet of plasma in the tokamak's exhaust system, the divertor, and may hold the key to dealing with the intense heat ejected from the fusion chamber onto surrounding surfaces. This is a major concern for researchers designing full-scale tokamak power plants.

The divertor, made from extremely tough materials, acts as a target for the waste plasma, and pumps helium ash and impurities out of the tokamak. But in a fusion power plant the divertor will be exposed to power loads of tens of megawatts per square metre (many times greater than a spacecraft re-entering the atmosphere), putting a strain on even the toughest of structures.

Continue reading on the CCFE website


return to the latest published articles