Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • On site | ITER celebrates important milestones

    On 16 June 2022, the ITER amphitheatre was packed with life again after two years of silence, part of a new project culture initiative called "Commit to De [...]

    Read more

  • Port cell maintenance | A full-scale mockup for dress rehearsals

    Every port in the ITER vacuum vessel has a corresponding port cell in the Tokamak Building. These corridor-like spaces allow heating and fuelling pipes, electri [...]

    Read more

  • Magnets | Have the last pancake!

    After close to five years of intense activity, the winding table at the south end of the European poloidal field coil factory on site is now empty. Last week, t [...]

    Read more

  • 30th ITER Council: Progress in a time of challenge and transition

    The Council chamber on the fifth floor of the ITER Headquarters building resonated once again with the sound of voices as Member representatives gathered for th [...]

    Read more

  • Open Doors Day | Back together again

    After more than two years, ITER has resumed a tradition that dates back to 2007—Open Doors Day. On Saturday 18 June, more than 50 "volunteers," staff [...]

    Read more

Of Interest

See archived entries

Turning the tables on turbulence

Image of plasma fluctuations in the MAST divertor, showing where the filaments are brightest and instabilities are strongest. (Click to view larger version...)
Image of plasma fluctuations in the MAST divertor, showing where the filaments are brightest and instabilities are strongest.
Plasma turbulence has been the bane of fusion scientists for decades. But now they're getting their own back—images of plasma inside the MAST tokamak at Culham are showing how turbulence could actually tackle one of the hottest issues in fusion reactor design.

Plasma is a fascinating but frustrating fact of life for researchers developing fusion energy. The fourth state of matter, despite making up most of the universe, still holds many secrets for Earth-bound physicists. Controlling this incredibly hot ionised gas in a magnetic field within a tokamak is a proven way of triggering fusion reactions, but the downside is that the plasma becomes turbulent and unstable, making it difficult to confine—analogous to the creation of blobs in a lava lamp, or the break-up of clouds in the sky.

The MAST videos provide the closest view yet of plasma in the tokamak's exhaust system, the divertor, and may hold the key to dealing with the intense heat ejected from the fusion chamber onto surrounding surfaces. This is a major concern for researchers designing full-scale tokamak power plants.

The divertor, made from extremely tough materials, acts as a target for the waste plasma, and pumps helium ash and impurities out of the tokamak. But in a fusion power plant the divertor will be exposed to power loads of tens of megawatts per square metre (many times greater than a spacecraft re-entering the atmosphere), putting a strain on even the toughest of structures.

Continue reading on the CCFE website


return to the latest published articles