Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Computer-Aided Design | A new platform with Australia

    In September 2016, the signature of a Cooperation Agreement between the Australian Nuclear Science and Technology Organisation (ANSTO) and the ITER Organization [...]

    Read more

  • Ten years later | A prodigious adventure

    ITER began its existence as an aspiration in the early 1980s, as actors in the fusion community called for the joint machine that would demonstrate the feasibil [...]

    Read more

  • Image of the week | An impromptu visit

    Afteraddressing the UN Climate Change Conference on 15 November, French President Emmanuel Macron toured thecolourful COP23 exhibition zone. It was towards the [...]

    Read more

  • Cryoplant | How to install a compressor

    In order to properly install a helium compressor skid on its concrete pad, you need to start with a large push broom to sweep away the dust that inevitably accu [...]

    Read more

  • Magnetic system | Nine rings to fight the force

    Work on the pre-compression ringsof the ITER magnet system progresses in Europe, where work on a full-scale prototype is underway. These technically challenging [...]

    Read more

Of Interest

See archived articles

Turning the tables on turbulence

Culham Centre for Fusion Energy, CCFE

Image of plasma fluctuations in the MAST divertor, showing where the filaments are brightest and instabilities are strongest. (Click to view larger version...)
Image of plasma fluctuations in the MAST divertor, showing where the filaments are brightest and instabilities are strongest.
Plasma turbulence has been the bane of fusion scientists for decades. But now they're getting their own back—images of plasma inside the MAST tokamak at Culham are showing how turbulence could actually tackle one of the hottest issues in fusion reactor design.

Plasma is a fascinating but frustrating fact of life for researchers developing fusion energy. The fourth state of matter, despite making up most of the universe, still holds many secrets for Earth-bound physicists. Controlling this incredibly hot ionised gas in a magnetic field within a tokamak is a proven way of triggering fusion reactions, but the downside is that the plasma becomes turbulent and unstable, making it difficult to confine—analogous to the creation of blobs in a lava lamp, or the break-up of clouds in the sky.

The MAST videos provide the closest view yet of plasma in the tokamak's exhaust system, the divertor, and may hold the key to dealing with the intense heat ejected from the fusion chamber onto surrounding surfaces. This is a major concern for researchers designing full-scale tokamak power plants.

The divertor, made from extremely tough materials, acts as a target for the waste plasma, and pumps helium ash and impurities out of the tokamak. But in a fusion power plant the divertor will be exposed to power loads of tens of megawatts per square metre (many times greater than a spacecraft re-entering the atmosphere), putting a strain on even the toughest of structures.

Continue reading on the CCFE website


return to the latest published articles