Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

  • Image of the week | The cryostat top lid, batch after batch

    Batch after batch, the elements for the top lid of the ITER cryostat keep arriving from India. As of today, 7 out of the 12 required segments have been delivere [...]

    Read more

  • Cooling water system | The tanks within a tank

    Deep inside the bowels of the Tokamak Building, the entrance to one of most spectacular rooms of the whole installation resembles that of a broom cupboard. [...]

    Read more

  • ITER assembly | Last major assembly contract signed

    One year after finalizing two major machine assembly contracts, the ITER Organization has chosen the contractors who will carry out assembly and installation ac [...]

    Read more

Of Interest

See archived entries

Europe to test steel for future fusion reactors

EUROFER97 is a candidate steel material for Europe's tritium breeding modules. Through a contract signed with Studsvik (Sweden), this material will be tested and characterized over the next five years in ITER-like conditions. (Click to view larger version...)
EUROFER97 is a candidate steel material for Europe's tritium breeding modules. Through a contract signed with Studsvik (Sweden), this material will be tested and characterized over the next five years in ITER-like conditions.
ITER will be the first fusion device to test tritium breeding—an essential technology for the fusion reactors of the future. While the fusion fuel deuterium can be distilled from all forms of water, tritium occurs only in trace quantities in nature.

Scientists know that tritium can be produced during the fusion reaction through contact with lithium: tritium is produced, or "bred," when neutrons escaping the plasma interact with lithium contained in the blanket wall of the tokamak.

Six tritium breeding concepts will be tested during the deuterium-tritium phase of ITER operation. Of these, the European Domestic Agency is responsible for two.

Europe is considering the use of EUROFER97 as the candidate steel material for its tritium breeding modules. Among its many advantages, this steel responds well to neutron activation and offers good resistance to neutron irradiation. It is compatible with liquid metal and ceramic breeders and its properties seem to respond well at high temperatures.

Through a contract signed with Studsvik (Sweden), a series of tests will be performed to learn more about the physical and mechanical properties of EUROFER97. Studsvik and NRG, its subcontractor, were awarded a contract in October by Europe for a detailed technical analysis. The tests are expected to last five years.

NRG will irradiate specimens in the High Flux Reactor in Petten (The Netherlands) under controlled conditions similar to those in ITER. After irradiation, the material samples will be transported to Studsvik for post-irradiation examination and characterization. The tests and examination will quantify the level at which neutron irradiation affects fatigue properties or fracture toughness, causes deformation, and/or influences the mechanical properties of this potential structural material for the blankets of future fusion reactors.

Read the original article on the European Domestic Agency website.




return to the latest published articles