Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Gravity supports | First production unit in China

    Bolted in a perfect circle to the pedestal ring of the cryostat base, 18 gravity supports will brace the curved outer edge of each toroidal field coil. These un [...]

    Read more

  • Conference | Fun-filled vacuum

    The science of ITER is not simple. But with a bit of imagination (and a dose of humour) a way can be found to convey the most complex physics notions to a publi [...]

    Read more

  • Naive question of the week | What happens to the car keys?

    We begin today a new series that aims to answer basic, even naive, questions about fusion and ITER. An image used often, when trying to convey the amount of e [...]

    Read more

  • Metrology | Facing the millimetre test

    In the realm of the very large at ITER, some of the biggest challenges are lurking down in the millimetre range. Within the Assembly Building a massive struct [...]

    Read more

  • Fusion research in Europe | Working it out together

    In Europe, fusion research is structured around a goal-oriented roadmap that closely involves universities, research laboratories and industry. Sibylle Günter, [...]

    Read more

Of Interest

See archived articles

Rule the ripple

Sabina Griffith

Fusion scientists from all around the world discussed the possible impact of the TBMs on plasma performance in ITER. (Click to view larger version...)
Fusion scientists from all around the world discussed the possible impact of the TBMs on plasma performance in ITER.
Ripples are not exactly a fusion scientist's best friend. These sinusoidal perturbations can influence plasma confinement and thus performance and power gain. A "ripple" in a fusion plasma can be compared to a ripple on the surface of water. When you stick your finger into the water, waves spread in a radial direction. In the ITER configuration, the "finger" can be a toroidal field coil, or a Test Blanket Module (TBM).

This week, a group of fusion scientists from all around the world met to discuss the possible impact of the TBMs on plasma performance in ITER. The main question addressed pertained to the ferromagnetic steel used for the TBMs and its potential influence on plasma confinement and performance. From simulations and experiments run on tokamaks such as JET, Alcator C-Mod, DIII-D or JT60-U it has become clear that ripples have a negative influence on H-mode confinement, but it is not yet clear what level of ripples is acceptable for ITER.

 (Click to view larger version...)
"The bottom line is that they are not likely to degrade performance in the early low-performance phase of ITER operation," explains Joe Snipes, ITER's Senior Scientific Officer for Integrated Scenarios. "However, they are likely, with the present designs, to degrade performance in the later high-performance phase. Unfortunately, the uncertainties in the extrapolation of the present results to ITER make it very difficult to quantify this result accurately enough to predict exactly how much ferromagnetic material near the plasma would be acceptable in the TBMs."

In the course of this week's two-and-a-half day endeavour, the team of international experts screened the existing database and discussed a variety of possible countermeasures including a reduction of the amount of ferritic steel used in the modules, insertion of correction coils or a recess of the TBMs away from the plasma. "It is quite a rare occasion to have physicists and engineers working and discussing together to reach a common goal," explains the meeting organizer, Luciano Giancarli, Chief Technical Officer in charge of the TBM Program in ITER. "The goal is to permit the performance of the most valuable TBM Program in ITER."

A smile for fusion history: the group posing in front of the Chateau de Cadarache. (Click to view larger version...)
A smile for fusion history: the group posing in front of the Chateau de Cadarache.
The decision was made to continue with the present designs with an understanding that the TBM teams should try their best to minimize the amount of ferromagnetic material while still maintaining the TBM mission goals. In the meanwhile, physicists will propose new experiments and attempt to refine the theoretical models to better estimate the amount of ripple-producing ferromagnetic material that is acceptable without degrading ITER performance too much. "Knowing exactly how much is too much can probably only be determined with high performance deuterium or deuterium-tritium experiments on ITER," says Joe Snipes.

"The ripples induced by the TBMs fall in the range where there are large uncertainties on the ripples effects and, therefore, further studies and experiments have been defined in order to reach clearer understanding in the next few years," Luciano Giancarli adds. "In the meantime, TBM designs can keep the present ferromagnetic mass provided that an effort will be made to reduce them before 2013, when the TBM conceptual design review is planned. In any case, the corresponding risks and tendencies are now much better identified and both physicists and engineers are well informed."


return to the latest published articles