Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • The making of a ring coil—a photo story

    From one end to the other of the on-site manufacturing facility for poloidal field coils, the different production stations are now clearly delimited, with tool [...]

    Read more

  • An unexpected fusion spinoff: aircraft carrier catapult

    The US company General Atomics is fabricating the 'beating heart of ITER,' an electromagnet called the central solenoid that is so large and powerful, that its [...]

    Read more

  • First steps towards "energizing"

    It takes more than the flipping of a switch to connect the ITER site to the French national grid. The operation, called a 'first energizing,' is a complex, step [...]

    Read more

  • The bioshield rises

    The bioshield structure is rising at the heart of the Tokamak Building. The last plot of the B1 level was poured last week; about half of the first ground level [...]

    Read more

  • Barcelona Supercomputer Center and ITER strengthen ties

    In a Memorandum of Understanding signed on 12 January 2017, the ITER Organization and the Barcelona Supercomputing Center (BSC) in Spain have agreed 'to promote [...]

    Read more

Of Interest

See archived articles

A new way of looking at burning plasma physics

-Phil Dooley, Australian National University

Matthew Hole (left) and Zhisong Qu are in the virtual control room for overseas fusion experiments at the Research School of Physics & Engineering (ANU College of Physical & Mathematical Sciences). Credit: Stuart Hay, ANU. (Click to view larger version...)
Matthew Hole (left) and Zhisong Qu are in the virtual control room for overseas fusion experiments at the Research School of Physics & Engineering (ANU College of Physical & Mathematical Sciences). Credit: Stuart Hay, ANU.
Scientists developing fusion energy experiments have solved a puzzle of why their million-degree heating beams sometimes fail, and instead destabilize the fusion experiments before energy is generated.

The solution used a new theory based on fluid flow and will help scientists in the quest to create gases with temperatures over a hundred million degrees and harness them to create clean, endless, carbon-free energy with nuclear fusion.

"There was a strange wave mode which bounced the heating beams out of the experiment," said Zhisong Qu, from the Australian National University (ANU), lead author of the research paper published in Physical Review Letters.

"This new way of looking at burning plasma physics allowed us to understand this previously impenetrable problem," said Mr Qu, a theoretical physicist in ANU's Research School of Physics and Engineering.

Hot plasma is extremely turbulent and can behave in surprising ways that baffle scientists, at times becoming unstable and dissipating before any fusion reactions can take place.

Mr Qu developed a simpler theory for plasma behaviour based on fluid flow and was able to explain an unstable wave mode that had been observed in the largest US fusion experiment, DIII-D.

Collaborator Dr Michael Fitzgerald, from the Culham Centre for Fusion Energy in the UK, said the new method made much more sense than previous brute-force theories that had treated plasma as individual atoms.

"When we looked at the plasma as a fluid we got the same answer, but everything made perfect sense," said Dr Fitzgerald.
"We could start using our intuition again in explaining what we saw, which is very powerful."

Leader of the research group, Associate Professor Matthew Hole, from ANU's Research School of Physics and Engineering said the theory's success with the DIII-D wave puzzle was just the beginning.

"It will open the door to understanding a whole lot more about fusion plasmas and contribute to the development of a long-term energy solution for the planet."

Associate Professor Hole said that, for him, the quest for fusion energy went beyond a sustainable planet.

"I'm a bit of a Star Trek fan—the only way you are going to travel to another star system is with a fusion reactor," he said.

Read the original media release at ANU.


return to the latest published articles