Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Toroidal field coils | Finishing touches on site

    Between the time a toroidal field coil is delivered to ITER and the moment it is ready to enter the pre-assembly process, certain tasks must be performed: the w [...]

    Read more

  • Cryostat base insertion | "A moment that will live in our memories"

    In the closing scene of the 1977 movie Close Encounters of the Third Kind, an alien spaceship hovers above an anxious and awestruck crowd of scientists and engi [...]

    Read more

  • Cryogenics | As dry as He can get

    Before it gets processed in the cold boxes of the ITER cryoplant, gaseous helium need to be perfectly dry—and this means removing every single water molecule th [...]

    Read more

  • Electron cyclotron transmission lines | Design phase ends

    US ITER is ready to start manufacturing high-power microwave transmission lines for the electron cyclotron resonance heating system. After several years of d [...]

    Read more

  • Gyrotrons | Russia completes four

    Gyrotrons (from the Greek 'gyro' (circle) and 'tron' (abstracted from electron) are the energy-generating devices of the electron cyclotron resonance heating sy [...]

    Read more

Of Interest

See archived entries

A celebration for the commissioning of IFMIF elements

Policy makers and scientists attend the recent installation ceremony of LIPAc in Rokkasho, Japan. LIPAc is the prototype accelerator of the International Fusion Materials Irradiation Facility (IFMIF) that will produce a neutron flux similar to that expected in a fusion reactor. (Click to view larger version...)
Policy makers and scientists attend the recent installation ceremony of LIPAc in Rokkasho, Japan. LIPAc is the prototype accelerator of the International Fusion Materials Irradiation Facility (IFMIF) that will produce a neutron flux similar to that expected in a fusion reactor.
With the arrival of major accelerator components from Europe, a new commissioning phase has begun for the prototype accelerator LIPAc, part of the International Fusion Materials Irradiation Facility (IFMIF) that is currently in its engineering validation and design phase in Rokkasho, Japan.

IFMIF is an accelerator-based neutron source that will use deuterium-lithium nuclear reactions to produce a large neutron flux similar to that expected at the first wall of a fusion reactor. 

By testing materials under conditions similar to those expected in a future fusion power plant, IFMIF will help qualify the advanced materials that will be used for plasma-facing surfaces. 

IFMIF's accelerator, LIPAc (the Linear IFMIF Prototype Accelerator) is designed to run a deuteron beam of 125 mA at 9 MeV in a continuous wave, reaching 1.1 MW beam power.

The radiofrequency quadrupole and injector in position in Rokkasho, Japan. (Click to view larger version...)
The radiofrequency quadrupole and injector in position in Rokkasho, Japan.
At a recent ceremony in Rokkasho, participants celebrated the commissioning of the accelerator's injector as well as the first phase of installation for the radiofrequency quadrupole and power generator. These milestones represent a step forward in design validation.

In the next steps, the injector will undergo further upgrades and preparation activities for beam commissioning will continue.

The main contributors to this important test facility are CEA (France), CIEMAT (Spain), INFN (Italy) and SCK-CEN (Belgium).

IFMIF is one of three fusion energy research projects underway within the framework of the Broader Approach Agreement signed in 2007 between Europe and Japan.


Read reports of the ceremony on the European Domestic Agency website and the IFMIF/EVEDA website.
 
More on the IFMIF project at IFMIF.org.


return to the latest published articles