Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Component delivery| A jewel in a box

    Sailing under the flag of Germany, the Regine is a mighty ship, strengthened for heavy cargo and equipped on its portside with two 750-tonne on-board cranes. Ha [...]

    Read more

  • Education | Make your own tokamak with 3D printing!

    It's not Lego, but it is definitely 'hands-on.' To offer a tangible device to illustrate the workings of magnetic confinement fusion in a tokamak, the ITER Orga [...]

    Read more

  • Worksite | Europe's Fusion for Energy is building the ITER installation

    Anyone driving to ITER can take full measure of the enormity of the project a few kilometers before reaching the destination. Gigantic cranes can be seen from a [...]

    Read more

  • Disruption mitigation | Experts in plasma disruptions gather online

    On 20-23 July, 120 international experts participated in the 1st IAEA Technical Meeting on Plasma Disruptions and their Mitigation, jointly organized by the Int [...]

    Read more

  • Start of assembly | World dignitaries celebrate a collaborative achievement

    Due to the constraints imposed by the COVID-19 pandemic, the crowd in the ITER Assembly Hall was small. But thanks to live broadcasting and video feed, the audi [...]

    Read more

Of Interest

See archived entries

A celebration for the commissioning of IFMIF elements

Policy makers and scientists attend the recent installation ceremony of LIPAc in Rokkasho, Japan. LIPAc is the prototype accelerator of the International Fusion Materials Irradiation Facility (IFMIF) that will produce a neutron flux similar to that expected in a fusion reactor. (Click to view larger version...)
Policy makers and scientists attend the recent installation ceremony of LIPAc in Rokkasho, Japan. LIPAc is the prototype accelerator of the International Fusion Materials Irradiation Facility (IFMIF) that will produce a neutron flux similar to that expected in a fusion reactor.
With the arrival of major accelerator components from Europe, a new commissioning phase has begun for the prototype accelerator LIPAc, part of the International Fusion Materials Irradiation Facility (IFMIF) that is currently in its engineering validation and design phase in Rokkasho, Japan.

IFMIF is an accelerator-based neutron source that will use deuterium-lithium nuclear reactions to produce a large neutron flux similar to that expected at the first wall of a fusion reactor. 

By testing materials under conditions similar to those expected in a future fusion power plant, IFMIF will help qualify the advanced materials that will be used for plasma-facing surfaces. 

IFMIF's accelerator, LIPAc (the Linear IFMIF Prototype Accelerator) is designed to run a deuteron beam of 125 mA at 9 MeV in a continuous wave, reaching 1.1 MW beam power.

The radiofrequency quadrupole and injector in position in Rokkasho, Japan. (Click to view larger version...)
The radiofrequency quadrupole and injector in position in Rokkasho, Japan.
At a recent ceremony in Rokkasho, participants celebrated the commissioning of the accelerator's injector as well as the first phase of installation for the radiofrequency quadrupole and power generator. These milestones represent a step forward in design validation.

In the next steps, the injector will undergo further upgrades and preparation activities for beam commissioning will continue.

The main contributors to this important test facility are CEA (France), CIEMAT (Spain), INFN (Italy) and SCK-CEN (Belgium).

IFMIF is one of three fusion energy research projects underway within the framework of the Broader Approach Agreement signed in 2007 between Europe and Japan.


Read reports of the ceremony on the European Domestic Agency website and the IFMIF/EVEDA website.
 
More on the IFMIF project at IFMIF.org.


return to the latest published articles