Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Neutral beam injection | How ELISE is contributing to ITER

    ITER's neutral beam injection system is based on a radio frequency source that has been the subject of decades of development in Europe. At Max Planck Institute [...]

    Read more

  • Image of the week | Almost there

    The Tokamak Building has reached its maximum height ... in terms of concrete that is. The 'jewel box' in reinforced concrete will grow no more; instead, it will [...]

    Read more

  • Powerful lasers | A mockup to demonstrate safety

    During ITER operation, high-powered lasers will gather important diagnostic information on the properties and behaviour of the plasma, such as density, temperat [...]

    Read more

  • Cryostat | Lower cylinder revealed

    They were all there: those who designed it, those who forged it, those who assembled and welded it, and those who closely monitored the requirements and procedu [...]

    Read more

  • Europe's DEMO | What it could be like

    It looks like ITER, feels like ITER, but it's not ITER. In this depiction of what the site layout for the next-step fusion machine, DEMO, might look like in Eur [...]

    Read more

Of Interest

See archived entries

Central solenoid fabrication: a photo reportage

The General Atomics work floor in Poway, California, during the installation of the central solenoid workstations in 2015. (Click to view larger version...)
The General Atomics work floor in Poway, California, during the installation of the central solenoid workstations in 2015.
Inside of a purpose-built facility at General Atomics in California (US), ten customized workstations for central solenoid fabrication—from winding through to final testing—have been built and are undergoing commissioning with a dummy coil. Winding was completed in April on the first 14-layer production module.
 
The ITER central solenoid is the giant electromagnet at the centre of the ITER machine that will generate most of the magnetic flux charge of the plasma, initiating the initial plasma current and contributing to its maintenance. Six individual coil modules will be stacked vertically within a "cage" of supporting structures. General Atomics will also produce a seventh module as a spare.

As part of its in-kind contributions to ITER, the US is responsible for 100 percent of the central solenoid magnet, including design, R&D, module fabrication from conductor supplied by Japan, associated structure, assembly tooling, bus extensions, and cooling connections.

In the photo gallery below, follow the mock coil through the manufacturing workstations, and view the latest pictures of module 1 winding and magnet structure fabrication.

All photos courtesy of General Atomics unless otherwise indicated.


return to the latest published articles