Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Neutral beam power | "Outside and beyond anything"

    In an empty plot on the ITER platform, preparatory works have started for the construction of two new buildings. From the outside, they will look like ordinary [...]

    Read more

  • Systems installation | Anticipation and flexibility

    It is a subterranean world of scaffolding and supports, piping and cables, concrete and embedded plates. To the untrained eye, the activity underway in the base [...]

    Read more

  • Image of the week | Keeping an eye on the hot (double) pancake

    An ITER ring-shaped coil begins its existence as cable-in-conduit conductor, wound into 'double pancakes' that are eventually stacked one upon the other to form [...]

    Read more

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

Of Interest

See archived entries

Of mega tools and dentist drills

The Poloidal Field Coils Winding Facility, where conductor lengths are transformed into large ring-shaped magnets, is the realm of large and powerful tools: tower-like "de-spoolers", a 5-metre-high vacuum test chamber, winding tables that are 17 metres in diameter, and an impregnation station as big as a carousel.

 (Click to view larger version...)
Much less visible but no less important to the fabrication process is a humble drill, barely larger than one a dentist might use.

Operated by hand, the drill is used to finalize so-called "penetrations"—openings by which liquid helium will flow into the cable-in-conduit conductor.

The operation is an extremely delicate one. First, a larger power drill is used to carefully bore a one-euro-size hole into the conductor's steel jacket. Then—using a small hand drill—the technician advances by one-tenth-of-a-millimetre increments until steel foil is exposed. (The foil, only two-tenths of a millimetre thick, is wrapped around the superconducting strands inside the conductor).

Throughout the operation the inside of the conductor is placed under pressure so that all metal particles generated by the drill are evacuated. And as a side benefit, the pressure results in a "hissing" sound as soon as the steel foil is pierced, effectively warning the technician to be extra cautious.

Because it is of vital importance that the superconducting strands remain unharmed, the technician wields the drill carefully in the final stage of the process to slowly and progressively chip away at the steel foil until the strands are exposed.

The French company CNIM has been chosen by Europe as the manufacturing contractor in the Poloidal Field Coils Winding Facility, where four of ITER's poloidal field coils will be fabricated.

Employees from CNIM have been practising the drilling technique for a few weeks now, and report that they feel comfortable with it. "Two tenths of a millimetre? That is a very comfortable safety margin," smiles André Forestier, the company's foreman on the ITER site.

In the long and complex sequence of operations that transforms conductor lengths into poloidal field coils weighing up to 400 tonnes, the quality of the hand drilling job is crucial. Once equipped with a helium inlet, each penetration (eight per coil, on average) forms a most strategic interface between the cryogenic system and the coils.


return to the latest published articles