Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Open Doors Day | An intense and unforgettable experience

    Saturday was Jacques's birthday. At age 90, the long-retired engineer from Aix-en-Provence had only one item on his wish list: to visit ITER for a third time an [...]

    Read more

  • Power conversion | A potent illustration of the "One ITER" spirit

    Europe made the buildings; the piping came from India; China and Korea provided the transformers; Russia manufactured the massive 'busbar' network. The ITER Org [...]

    Read more

  • Fusion world | Upgrade completed on DIII-D tokamak

    The DIII-D National Fusion Program (US) has completed a series of important enhancements to its fusion facility, providing researchers with several first-of-a-k [...]

    Read more

  • Vacuum lab | Ensuring leak test sensitivity

    A helium leak test is one of several factory acceptance tests planned for the sectors of the ITER vacuum vessel before they are shipped to ITER. In a vacuum lab [...]

    Read more

  • Bookmark | The Future of Fusion Energy

    To write about fusion is to walk a fine line between the temptation of lyricism and the arid demands of scientific accuracy. Whereas the general media tends to [...]

    Read more

Of Interest

See archived entries

Letting off the heat

R.A.

At the northeast end of the ITER site, in a zone not far from the Tokamak Complex and Assembly Hall, workers are busy installing rebar reinforcement, pouring concrete and erecting walls and columns.

Works are ongoing on a 6,000 m² area that will accommodate two basins with a total volume of 20,000 m³ as well as an induced-draft cooling tower made of 10 independent cells. (Click to view larger version...)
Works are ongoing on a 6,000 m² area that will accommodate two basins with a total volume of 20,000 m³ as well as an induced-draft cooling tower made of 10 independent cells.
The 6,000 m² area will be home to the final link in one of ITER's most widely distributed plant systems—the cooling water system, whose kilometres of piping, closed and open loops, and heat exchangers will collect and reject the heat generated by the Tokamak's plasma pulses and the operation of its auxiliary systems.

The cooling water zone on the ITER platform will accommodate cold and hot basins with a total volume of 20,000 m³ as well as an induced-draft cooling tower (made of 10 independent cells) located above the cold basin.

The cooling water zone is the final link of the ITER cooling water system—the ITER plant system responsible for collecting and rejecting the heat generated by the machine and auxiliary systems. (Click to view larger version...)
The cooling water zone is the final link of the ITER cooling water system—the ITER plant system responsible for collecting and rejecting the heat generated by the machine and auxiliary systems.
With the exception of the civil works, which are under Europe's responsibility, the cooling water systems in this zone are part of India's procurement to ITER and will be installed by the ITER Organization.

The heat that needs to be evacuated from the ITER Tokamak and auxiliary systems is considerable, reaching 1100 MW during the plasma burn phase. If ITER were an industrial plant, the better part of that heat would be used to produce pressurized steam and (by way of turbines and generators) electricity. Only residual heat would need to be dissipated.

But as an experimental installation, operating in pulses, ITER wasn't designed to produce electricity. All the power the fusion reaction generates will thus need to be extracted and rejected to the atmosphere.

The cooling tower is made of 10 individual cells, each filled with a very thin plastic material. Water pumped to the top of the cells sprinkles through the filler. Large 12-metre fans at the top cells pull air through the filler to accelerate evaporation. (Click to view larger version...)
The cooling tower is made of 10 individual cells, each filled with a very thin plastic material. Water pumped to the top of the cells sprinkles through the filler. Large 12-metre fans at the top cells pull air through the filler to accelerate evaporation.
And where an industrial power plant would deliver constant power output, the typical ITER operation cycle will consist of a succession of 500-second plasma pulses, each followed by 1300-second "dwell" period.

"The pulsed nature of ITER operation make it more challenging to make efficient use of the cooling tower," explains ITER Cooling Water Responsible Officer Steve Ployhar. "Among other things, it explains the need for two basins—hot water will be accumulated in the hot basin during the pulses and released to the cooling tower and cold basin during dwells."

As civil works progress on the cooling water zone, fabrication of the 20-metre-high cooling tower is about to begin in India. Erection of the first two cooling tower cells is scheduled for completion in May 2018.

 


return to the latest published articles