Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

  • Image of the week | The cryostat top lid, batch after batch

    Batch after batch, the elements for the top lid of the ITER cryostat keep arriving from India. As of today, 7 out of the 12 required segments have been delivere [...]

    Read more

  • Cooling water system | The tanks within a tank

    Deep inside the bowels of the Tokamak Building, the entrance to one of most spectacular rooms of the whole installation resembles that of a broom cupboard. [...]

    Read more

  • ITER assembly | Last major assembly contract signed

    One year after finalizing two major machine assembly contracts, the ITER Organization has chosen the contractors who will carry out assembly and installation ac [...]

    Read more

Of Interest

See archived entries

The balance of power

It comes as no surprise that the French railway operator SNCF is the largest consumer of electricity in the country—it takes a lot of megawatts to power 500 superfast TGVs* and countless regular electric trains. Steelworks come in second; they, too, need considerable power to operate the induction furnaces that melt the metal before it is formed into ingots.

Work is underway to prepare for the ''energizing'' of the 400 kV switchyard. (Click to view larger version...)
Work is underway to prepare for the ''energizing'' of the 400 kV switchyard.
When ITER begins full-power operation, its electrical consumption will be comparable to that of a large steel mill. And the ITER Organization will be billed at the same level: at today's rate, which is on the order of 50 euros per MW/h, ITER's electric bill will amount to approximately EUR 2.5 million per month.

ITER needs electrical power in two different forms: DC current for plasma operations (power injection into the magnets, plasma heating, etc.) and AC current for the industrial auxiliaries of the installation such as the cryoplant and buildings.

The Pulsed Power Electrical Network (PPEN) will deliver power by way of three giant transformers (procured by China) and a set of powerful AC/DC converters hosted in the Magnet Power Conversion buildings. A plasma shot will require an input of 300 MW—equivalent to 35 TGVs powered up for departure.

Four US-procured conventional transformers, of which only three will be operating at a given time, will feed AC power to the plant systems and buildings. Out of 100 MW required, the cooling water system will be the largest client (40 percent), followed by the cryoplant (30 percent), building services and the tritium plant (10 percent each).

Contractors are laying cables for communication between ITER and the French transmission system operator RTE (Réseau de transport d'électricité). (Click to view larger version...)
Contractors are laying cables for communication between ITER and the French transmission system operator RTE (Réseau de transport d'électricité).
For the moment, the electrical needs of the ITER buildings and the worksite are covered by a 15 kV line extended from the neighbouring CEA research centre. But early next year, the first part of the 400 kV switchyard will be "energized" and ITER will draw power directly from the national grid.

Work is underway now in the switchyard and in the area of the transformers to prepare for this moment. Contractors are creating the concrete slabs that will support additional electrical equipment and laying cables for the switchyard's remote control operation and for communication with the French transmission system operator RTE (Réseau de transport d'électricité).

"ITER power requirements are considerable and we must not disturb power distribution by the French national grid in any way," explains Joël Hourtoule, head of the ITER Electrical Power Distribution Section. "This means that we must 'exchange signals' with RTE and keep them informed of our plasma campaign schedule. In some exceptional circumstances—like an unexpected cold spell combined with several reactors closed for maintenance—they can ask us to delay a pulse."

And like TGVs, ITER pulses will never be launched precisely at the hour when European networks are synchronized ... rather a few minutes before or after.

Mega infrastructures and delicate balance: electricity, especially at ITER, is about more than meets the eye.

* Train à Grande Vitesse ("high speed train")


return to the latest published articles