Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Contract management | E-procurement helps to simplify and streamline

    The Procurement & Contracts Division at the ITER Organization is rolling out a new e-procurement tool that will simplify and streamline contract management [...]

    Read more

  • Cooling water plant | Partners work in lockstep to keep ITER cool

    Much of the cooling water plant is now ready for commissioning, thanks to a well-executed plan and close coordination among partners. 'Sooner or later, all heat [...]

    Read more

  • American Physical Society | Alberto Loarte elected Fellow

    Alberto Loarte, head of the ITER Science Division, has been elected as a Fellow of the American Physical Society (APS). Loarte was nominated by the APS Division [...]

    Read more

  • Fusion events | Bringing power to the people

    In tandem with the annual Fête de la Science, a French exhibition on the sciences, the European research consortium EUROfusion is premiering a new travelling ex [...]

    Read more

  • Fusion world | Stellarators "an option" for future power plants

    In the history of magnetic fusion, the photo is iconic. A smiling, bespectacled middle-aged man stands next to a strange contraption sitting on a makeshift wood [...]

    Read more

Of Interest

See archived entries

Wendelstein achieves ultra-precise magnetic topology

A recent article in the online journal Nature Communications confirms that the complex topology of the magnetic field of Wendelstein 7-X—the world's largest stellarator—is highly accurate, with deviations from design configuration measured at fewer than 1-in-100,000.

To measure the magnetic field, the scientists launched an electron beam along the field lines. They next obtained a cross-section of the entire magnetic surface by using a fluorescent rod to intersect and sweep through the lines, thereby inducing fluorescent light in the shape of the surface. (Click to view larger version...)
To measure the magnetic field, the scientists launched an electron beam along the field lines. They next obtained a cross-section of the entire magnetic surface by using a fluorescent rod to intersect and sweep through the lines, thereby inducing fluorescent light in the shape of the surface.
In the complex shape of a stellarator, high engineering accuracy is needed because even the smallest magnetic field errors can have a large effect on the magnetic surfaces and the confinement of the plasma.

Wendelstein 7-X relies on a system of 50 non-planar and superconducting magnet coils to create a precisely shaped magnetic "cage" to confine the plasma for discharges of up to 30 minutes (projected). Following a first helium plasma in December 2015 and an initial hydrogen campaign with over 2,000 plasma pulses, the machine is now being prepared for high power operation at the Max-Planck-Institute für Plasmaphysik (IPP) in Germany.

Because a carefully tailored topology of nested magnetic surfaces is necessary for optimum confinement, the study's highly sensitive measurements provide welcome proof that such a topology is feasible and verifiable with the required accuracy.

Read the original article in Nature Communications.
Other reports at IPP and the Princeton Plasma Physics Laboratory, PPPL.


return to the latest published articles