Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Construction | A new team of problem solvers

    Integrating the many systems that make up the Tokamak machine is a lot like delivering a clash-free layout for the engine room of a modern nuclear submarine, on [...]

    Read more

  • Fusion world | Large fusion conference opens in Gandhi's hometown

    Mahatma Gandhi, whose mandir (a Hindi word for 'temple' or 'place of learning') is hosting the 27th edition of the International Atomic Energy Agency's Fusion E [...]

    Read more

  • ITER | A day in the life of

    Seven hundred people took part in the ITER Organization's latest Open Doors Day event on Saturday 20 October. ITER opened its doors on a beautiful autumn day [...]

    Read more

  • Langmuir probes | Have heatshield, will travel

    Delivering components to the ITER site requires massive logistics ... most of the time. At others, an airline passenger's pocket suffices. Of course, it is a ma [...]

    Read more

  • Physics | 10th ITER International School in January

    The ITER International School aims to prepare young scientists/engineers for working in the field of nuclear fusion and in research applications associated with [...]

    Read more

Of Interest

See archived entries

Wendelstein achieves ultra-precise magnetic topology

A recent article in the online journal Nature Communications confirms that the complex topology of the magnetic field of Wendelstein 7-X—the world's largest stellarator—is highly accurate, with deviations from design configuration measured at fewer than 1-in-100,000.

To measure the magnetic field, the scientists launched an electron beam along the field lines. They next obtained a cross-section of the entire magnetic surface by using a fluorescent rod to intersect and sweep through the lines, thereby inducing fluorescent light in the shape of the surface. (Click to view larger version...)
To measure the magnetic field, the scientists launched an electron beam along the field lines. They next obtained a cross-section of the entire magnetic surface by using a fluorescent rod to intersect and sweep through the lines, thereby inducing fluorescent light in the shape of the surface.
In the complex shape of a stellarator, high engineering accuracy is needed because even the smallest magnetic field errors can have a large effect on the magnetic surfaces and the confinement of the plasma.

Wendelstein 7-X relies on a system of 50 non-planar and superconducting magnet coils to create a precisely shaped magnetic "cage" to confine the plasma for discharges of up to 30 minutes (projected). Following a first helium plasma in December 2015 and an initial hydrogen campaign with over 2,000 plasma pulses, the machine is now being prepared for high power operation at the Max-Planck-Institute für Plasmaphysik (IPP) in Germany.

Because a carefully tailored topology of nested magnetic surfaces is necessary for optimum confinement, the study's highly sensitive measurements provide welcome proof that such a topology is feasible and verifiable with the required accuracy.

Read the original article in Nature Communications.
Other reports at IPP and the Princeton Plasma Physics Laboratory, PPPL.


return to the latest published articles