Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • FEC 2020 | E-conference opens, participation never higher

    The 28th IAEA Fusion Energy Conference (FEC) is off to an auspicious start. Open to the public for the first time thanks to the technical possibilities of an al [...]

    Read more

  • Vacuum vessel in Europe | Fitting the pieces virtually

    A 'virtual fit' tool developed by the European Domestic Agency is helping the vacuum vessel manufacturing team anticipate the challenge of final assembly—the mo [...]

    Read more

  • Gas injection system | Last manifolds completed in China

    Contractors to the Chinese Domestic Agency have completed an important part of the gas injection system—the distribution manifolds that carry gas species from t [...]

    Read more

  • Magnets | Seventh vertical coil reaches ITER

    Seven toroidal field coils have reached ITER in the past year. The latest, TF3 from Europe, passed through the ITER gates on Friday 3 May. The European and Japa [...]

    Read more

  • Tritium Building | Work resumes

    The energy-producing plasmas in ITER will be fuelled in equal measure by the hydrogen isotopes deuterium and tritium. Deuterium is a stable element that industr [...]

    Read more

Of Interest

See archived entries

Wendelstein achieves ultra-precise magnetic topology

A recent article in the online journal Nature Communications confirms that the complex topology of the magnetic field of Wendelstein 7-X—the world's largest stellarator—is highly accurate, with deviations from design configuration measured at fewer than 1-in-100,000.

To measure the magnetic field, the scientists launched an electron beam along the field lines. They next obtained a cross-section of the entire magnetic surface by using a fluorescent rod to intersect and sweep through the lines, thereby inducing fluorescent light in the shape of the surface. (Click to view larger version...)
To measure the magnetic field, the scientists launched an electron beam along the field lines. They next obtained a cross-section of the entire magnetic surface by using a fluorescent rod to intersect and sweep through the lines, thereby inducing fluorescent light in the shape of the surface.
In the complex shape of a stellarator, high engineering accuracy is needed because even the smallest magnetic field errors can have a large effect on the magnetic surfaces and the confinement of the plasma.

Wendelstein 7-X relies on a system of 50 non-planar and superconducting magnet coils to create a precisely shaped magnetic "cage" to confine the plasma for discharges of up to 30 minutes (projected). Following a first helium plasma in December 2015 and an initial hydrogen campaign with over 2,000 plasma pulses, the machine is now being prepared for high power operation at the Max-Planck-Institute für Plasmaphysik (IPP) in Germany.

Because a carefully tailored topology of nested magnetic surfaces is necessary for optimum confinement, the study's highly sensitive measurements provide welcome proof that such a topology is feasible and verifiable with the required accuracy.

Read the original article in Nature Communications.
Other reports at IPP and the Princeton Plasma Physics Laboratory, PPPL.


return to the latest published articles