Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Tokamak cooling system | Final design achieved

    To remove the heat from the components closest to the plasma, the tokamak cooling water system will rely on over 36 kilometres of nuclear-grade piping and fitti [...]

    Read more

  • Worksite progress | Spot the differences

    Let's play the "spot the differences" game between these two general views of the ITER site, one taken last Thursday 18 January, the other three month [...]

    Read more

  • Inventions | Where have all the neutrons gone?

    It is not unusual in the course of a work day at the world's largest scientific experiment to rely on creativity to resolve the challenge at hand. But less comm [...]

    Read more

  • Neutral beam test facility | Europe delivers first-of-a-kind equipment

    Tullio Bonicelli, in charge of Europe's contributions to the ITER neutral beam heating system, calls them "beyond state-of-the-art components." The hi [...]

    Read more

  • Vacuum vessel | First segment completed in Korea

    The technically challenging fabrication of the ITER vacuum vessel is progressing in Korea, where Hyundai Heavy Industries has completed the first poloidal segme [...]

    Read more

Of Interest

See archived articles

Piece by piece the vacuum vessel takes shape

The AMW consortium (Ansaldo Nucleare S.p.A, Mangiarotti, Walter Tosto) was chosen in 2010 by the European Domestic Agency to manufacture Europe's contribution to the ITER vacuum vessel. The photos below document progress at Walter Tosto, where activities are underway to manufacture the different elements that make up a full vacuum vessel sector.

Many sub-assemblies make up each upper poloidal segment PS2. Pictured, technicians at Walter Tosto position and tack weld flexible housings that will be situated between the double walls of the vacuum vessel. The next step is electron beam welding. (Click to view larger version...)
Many sub-assemblies make up each upper poloidal segment PS2. Pictured, technicians at Walter Tosto position and tack weld flexible housings that will be situated between the double walls of the vacuum vessel. The next step is electron beam welding.
The ITER vacuum vessel will be twice as big and sixteen times as heavy as the largest tokamak in operation today. Its double-wall structure is designed to provide a high quality vacuum for the plasma as well as the first confinement barrier for tritium, forming an important part of safety of the ITER device.

The complex doughnut-shape container is formed from nine sectors that are welded together. Four segments go into the manufacturing of a sector (inboard, upper, equatorial and lower).

Seen from above, one sub-assembly for upper poloidal segment PS2 under fit-up last autumn. The sub-assembly is made of 2 inner shells, 60-millimetre formed plates, 3 poloidal ribs, 16 flexible housings and 4 inter-modular keys. Now, the sub-assembly has been fully welded and the repair of some localized defects is ending. (Click to view larger version...)
Seen from above, one sub-assembly for upper poloidal segment PS2 under fit-up last autumn. The sub-assembly is made of 2 inner shells, 60-millimetre formed plates, 3 poloidal ribs, 16 flexible housings and 4 inter-modular keys. Now, the sub-assembly has been fully welded and the repair of some localized defects is ending.
Technicians at Walter Tosto are carrying out the cold and hot press forming activities for all the segments of the AMW consortium and the full manufacturing of two of the segments—the upper (PS2) and equatorial (PS3) poloidal segments. Each of these in turn is formed from several sub-segments.

When completed, each vacuum vessel sector will be 13 metres high, 6.5 metres wide, 35-85 thick (double wall) and weigh about 450 tonnes.

For more about the ITER vacuum vessel, click here.


return to the latest published articles