Real-time smoothing of magnetic field irregularities

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryodistribution | Blowing cold and hot

    If the cryodistribution system were a railroad, the cryogenic termination cold box would be its main switch. A massive structure packed with pipes, valves, elec [...]

    Read more

  • Pre-assembly activities | Captured from on high

    With assembly tools standing 22 metres tall, massive bridge cranes straddling the width of the building, and alien-shaped components placed at regular intervals [...]

    Read more

  • 27th ITER Council | Assembly moves ahead

    The Twenty-Seventh Meeting of the ITER Council took place by videoconference on 18 and 19 November 2020, chaired by LUO Delong from China. Representat [...]

    Read more

  • Fusion world | Translating JET into ITER

    With an inner wall made of beryllium and tungsten, the European tokamak JET is the only tokamak in the world to share the same material environment as ITER. Whe [...]

    Read more

  • Worksite | Major progress you don't see from the air

    There was a time when aerial pictures of the ITER worksite taken at six-month intervals showed spectacular change. Buildings and structures sprouted from previo [...]

    Read more

Of Interest

See archived entries

Real-time smoothing of magnetic field irregularities

Real-time error field correction was demonstrated by a multi-institutional research team that included scientists from General Atomics, Oak Ridge Associated Universities, the University of California-San Diego, and Columbia University. Note the ''X point'' in the upper part of the D-shaped plasma in the background poster: DIII-D is one of the few tomakaks that can be operated with upper, lower or multiple ''X points.'' (Click to view larger version...)
Real-time error field correction was demonstrated by a multi-institutional research team that included scientists from General Atomics, Oak Ridge Associated Universities, the University of California-San Diego, and Columbia University. Note the ''X point'' in the upper part of the D-shaped plasma in the background poster: DIII-D is one of the few tomakaks that can be operated with upper, lower or multiple ''X points.''
Small irregularities, or "error fields," in the magnetic field of tokamaks may lead to effects that include degradation of plasma confinement and generation of plasma instabilities.

In tokamaks such as ITER, these irregularities are "smoothed" using special control coils. In the ITER design, 18 superconducting correction coils inserted between the toroidal and poloidal field coils will compensate for field errors caused by geometrical deviations due to manufacturing and assembly tolerances.

However efficient methods to detect the error fields and to determine the optimum currents in the correction coils have been a challenge in present devices.

Scientists at the DIII-D National Fusion Facility—the largest magnetic fusion facility in the United States—have developed a new method for minimizing magnetic field asymmetries in a tokamak. The method is based on maximizing rotation of the confined plasma during a single discharge and has been successfully tested in preliminary experiments at DIII-D.

The research team consisted of scientists from multiple institutions, including General Atomics, Oak Ridge Associated Universities, University of California-San Diego, and Columbia University.

Rather than apply an approximate, pre-calculated correction, the new method continuously adjusts the currents in the correction coils. One effect of an error field is a braking force that reduces the plasma's rotation, so the control system measures the plasma rotation in real-time while continuously varying the correction field. Using modern control science methods, this process rapidly determines the optimal correction field that minimizes the braking.

Real-time maximization of the plasma rotation has several advantages: efficient optimization of the correction field within a single discharge (simulations suggest that the optimization process can be performed in ITER in a few tens of seconds); minimization of the risk to inadvertently destabilize the plasma; and continuous tracking of variations in error field sources to maintain the best plasma conditions throughout the discharge.

These advantages make this new method a promising option for improving the operation of ITER by minimizing the undesirable effects of error fields.

For further details, please see the full article in Nuclear Fusion here.

Source: General Atomics


return to the latest published articles