Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Cryolines | Another day, another spool

    Having wedged his body and equipment into the cramped space between the ceiling and the massive pipe, a worker is busy welding two cryolines spools. A few metre [...]

    Read more

  • Image of the week | Bearings unveiled

    The construction teams are in the last stages of preparing the Tokamak pit for the first major operation of ITER machine assembly: the lowering of the cryostat [...]

    Read more

  • Technology | Perfecting tritium breeding for DEMO and beyond

    While ITER will never breed tritium for its own consumption, it will test breeding blanket concepts—the tools and techniques that designers of future DEMO react [...]

    Read more

  • Fusion world | Japan and Europe complete the assembly of JT-60SA

    The JT-60SA fusion experiment in Naka, Japan, is designed to explore advanced plasma physics in support of the operation of ITER and next-phase devices. After s [...]

    Read more

  • Manufacturing | Thermal shield milestone in Korea

    Six years after the start of fabrication, Korean contractor SFA has completed the last 40° sector of vacuum vessel thermal shield. The stainless steel panels, c [...]

    Read more

Of Interest

See archived entries

Real-time smoothing of magnetic field irregularities

Real-time error field correction was demonstrated by a multi-institutional research team that included scientists from General Atomics, Oak Ridge Associated Universities, the University of California-San Diego, and Columbia University. Note the ''X point'' in the upper part of the D-shaped plasma in the background poster: DIII-D is one of the few tomakaks that can be operated with upper, lower or multiple ''X points.'' (Click to view larger version...)
Real-time error field correction was demonstrated by a multi-institutional research team that included scientists from General Atomics, Oak Ridge Associated Universities, the University of California-San Diego, and Columbia University. Note the ''X point'' in the upper part of the D-shaped plasma in the background poster: DIII-D is one of the few tomakaks that can be operated with upper, lower or multiple ''X points.''
Small irregularities, or "error fields," in the magnetic field of tokamaks may lead to effects that include degradation of plasma confinement and generation of plasma instabilities.

In tokamaks such as ITER, these irregularities are "smoothed" using special control coils. In the ITER design, 18 superconducting correction coils inserted between the toroidal and poloidal field coils will compensate for field errors caused by geometrical deviations due to manufacturing and assembly tolerances.

However efficient methods to detect the error fields and to determine the optimum currents in the correction coils have been a challenge in present devices.

Scientists at the DIII-D National Fusion Facility—the largest magnetic fusion facility in the United States—have developed a new method for minimizing magnetic field asymmetries in a tokamak. The method is based on maximizing rotation of the confined plasma during a single discharge and has been successfully tested in preliminary experiments at DIII-D.

The research team consisted of scientists from multiple institutions, including General Atomics, Oak Ridge Associated Universities, University of California-San Diego, and Columbia University.

Rather than apply an approximate, pre-calculated correction, the new method continuously adjusts the currents in the correction coils. One effect of an error field is a braking force that reduces the plasma's rotation, so the control system measures the plasma rotation in real-time while continuously varying the correction field. Using modern control science methods, this process rapidly determines the optimal correction field that minimizes the braking.

Real-time maximization of the plasma rotation has several advantages: efficient optimization of the correction field within a single discharge (simulations suggest that the optimization process can be performed in ITER in a few tens of seconds); minimization of the risk to inadvertently destabilize the plasma; and continuous tracking of variations in error field sources to maintain the best plasma conditions throughout the discharge.

These advantages make this new method a promising option for improving the operation of ITER by minimizing the undesirable effects of error fields.

For further details, please see the full article in Nuclear Fusion here.

Source: General Atomics


return to the latest published articles