Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Lower cylinder | A transfer that felt like art

    Art has little to do with the transfer of a giant component. On Monday however, as ITER was preparing to celebrate Leonardo da Vinci's 500th anniversary, scienc [...]

    Read more

  • Event | ITER in Da Vinci mode

    'The most noble pleasure is the joy of understanding.' Written more than 500 years ago in the private journal of Leonardo da Vinci, these words still felt timel [...]

    Read more

  • Image of the week | When the Pit inspires an artist

    On a Sunday morning, when all is silent and still on the ITER platform, an eerie dimension is added to the Tokamak Pit. Hidden eyes seem to peer through the [...]

    Read more

  • Leonardo and innovation | In the steps of a giant

    To the members of a panel on innovation and Italian leadership, the moderator had one question: how do you see Leonardo da Vinci's scientific method—a systemati [...]

    Read more

  • Image of the week | Sandblasting

    Whether at home or in a nuclear installation, a painting job begins with surface preparation. In the ITER Tokamak Pit, close to 3,000 square metres of wall need [...]

    Read more

Of Interest

See archived entries

Real-time smoothing of magnetic field irregularities

Real-time error field correction was demonstrated by a multi-institutional research team that included scientists from General Atomics, Oak Ridge Associated Universities, the University of California-San Diego, and Columbia University. Note the ''X point'' in the upper part of the D-shaped plasma in the background poster: DIII-D is one of the few tomakaks that can be operated with upper, lower or multiple ''X points.'' (Click to view larger version...)
Real-time error field correction was demonstrated by a multi-institutional research team that included scientists from General Atomics, Oak Ridge Associated Universities, the University of California-San Diego, and Columbia University. Note the ''X point'' in the upper part of the D-shaped plasma in the background poster: DIII-D is one of the few tomakaks that can be operated with upper, lower or multiple ''X points.''
Small irregularities, or "error fields," in the magnetic field of tokamaks may lead to effects that include degradation of plasma confinement and generation of plasma instabilities.

In tokamaks such as ITER, these irregularities are "smoothed" using special control coils. In the ITER design, 18 superconducting correction coils inserted between the toroidal and poloidal field coils will compensate for field errors caused by geometrical deviations due to manufacturing and assembly tolerances.

However efficient methods to detect the error fields and to determine the optimum currents in the correction coils have been a challenge in present devices.

Scientists at the DIII-D National Fusion Facility—the largest magnetic fusion facility in the United States—have developed a new method for minimizing magnetic field asymmetries in a tokamak. The method is based on maximizing rotation of the confined plasma during a single discharge and has been successfully tested in preliminary experiments at DIII-D.

The research team consisted of scientists from multiple institutions, including General Atomics, Oak Ridge Associated Universities, University of California-San Diego, and Columbia University.

Rather than apply an approximate, pre-calculated correction, the new method continuously adjusts the currents in the correction coils. One effect of an error field is a braking force that reduces the plasma's rotation, so the control system measures the plasma rotation in real-time while continuously varying the correction field. Using modern control science methods, this process rapidly determines the optimal correction field that minimizes the braking.

Real-time maximization of the plasma rotation has several advantages: efficient optimization of the correction field within a single discharge (simulations suggest that the optimization process can be performed in ITER in a few tens of seconds); minimization of the risk to inadvertently destabilize the plasma; and continuous tracking of variations in error field sources to maintain the best plasma conditions throughout the discharge.

These advantages make this new method a promising option for improving the operation of ITER by minimizing the undesirable effects of error fields.

For further details, please see the full article in Nuclear Fusion here.

Source: General Atomics


return to the latest published articles