Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Tokamak cooling system | Final design achieved

    To remove the heat from the components closest to the plasma, the tokamak cooling water system will rely on over 36 kilometres of nuclear-grade piping and fitti [...]

    Read more

  • Worksite progress | Spot the differences

    Let's play the "spot the differences" game between these two general views of the ITER site, one taken last Thursday 18 January, the other three month [...]

    Read more

  • Inventions | Where have all the neutrons gone?

    It is not unusual in the course of a work day at the world's largest scientific experiment to rely on creativity to resolve the challenge at hand. But less comm [...]

    Read more

  • Neutral beam test facility | Europe delivers first-of-a-kind equipment

    Tullio Bonicelli, in charge of Europe's contributions to the ITER neutral beam heating system, calls them "beyond state-of-the-art components." The hi [...]

    Read more

  • Vacuum vessel | First segment completed in Korea

    The technically challenging fabrication of the ITER vacuum vessel is progressing in Korea, where Hyundai Heavy Industries has completed the first poloidal segme [...]

    Read more

Of Interest

See archived articles

Barcelona Supercomputer Center and ITER strengthen ties

ITER Communications

The supercomputer MareNostrum 3, at the Barcelona Supercomputing Center. Plans are underway for MareNostrum 4, which will be 12.4 times more powerful. (Click to view larger version...)
The supercomputer MareNostrum 3, at the Barcelona Supercomputing Center. Plans are underway for MareNostrum 4, which will be 12.4 times more powerful.
In a Memorandum of Understanding signed on 12 January 2017, the ITER Organization and the Barcelona Supercomputing Center (BSC) in Spain have agreed "to promote cooperation and exchange in all academic and scientific fields of mutual interest and to advance the training of young researchers."

ITER and BSC already collaborate in the area of numerical modelling to assess the design of the ITER pellet injector, under development to reduce the effects of plasma disruptions. These computer simulations, based upon non-linear 3D Magnetohydrodynamics (MHD) methods, focus on modelling the injection of pellets to forecast and control instabilities that could damage the reactor. The goal of these simulations is to assess the optimal pellet size and speed of the pellet injector.

The new Memorandum of Understanding will allow expansion in the areas of cooperation to include further areas of integrated modelling, particularly in the area of ion cyclotron resonance heating (ICRH), which is one of the strengths of the BSC Fusion Team led by Mervi Mantsinen. 

ITER's Simon Pinches, from the Confinement & Modelling Section and Responsible Officer for the ITER Integrated Modelling Program, is confident that the cooperation with BSC will be mutually beneficial, providing the means for enhanced simulation capabilities of importance to ITER.

"We are pleased to strengthen our collaboration with BSC in the area of integrated modelling. The ability to accurately simulate the influences of the different heating systems in ITER is an important capability for predicting the behaviour and performance of ITER plasmas."



return to the latest published articles