Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Fusion world | Innovative approaches and how ITER can help

    More than 30 private fusion companies from around the world attended ITER's inaugural Private Sector Fusion Workshop in May 2024. Four of them participated in a [...]

    Read more

  • Robert Aymar (1936-2024) | A vision turned into reality

    Robert Aymar, who played a key role in the development of fusion research in France and worldwide, and who headed the ITER project for 10 years (1993-2003) befo [...]

    Read more

  • The ITER community | United in a common goal

    Gathered on the ITER platform for a group photo (the first one since 2019, in pre-Covid times) the crowd looks impressive. Although several hundred strong, it r [...]

    Read more

  • Vacuum vessel | Europe completes first of five sectors

    The ITER assembly teams are gearing up to receive a 440-tonne machine component shipped from Italy—sector #5, the first of five vacuum vessel sectors expected f [...]

    Read more

  • SOFT 2024 | Dublin conference highlights progress and outstanding challenges

    Nestled in the residential suburb of Glasnevin, Dublin City University is a fairly young academic institution. When it opened its doors in 1980 it had just 200 [...]

    Read more

Of Interest

See archived entries

Ozonators on their way

Ozone will be produced on site by concentrating oxygen from the atmosphere and circulating the oxigen-enriched gaz through a system of glass tubes and high-voltage electrodes—a process called ''Corona discharge''. (Click to view larger version...)
Ozone will be produced on site by concentrating oxygen from the atmosphere and circulating the oxigen-enriched gaz through a system of glass tubes and high-voltage electrodes—a process called ''Corona discharge''.
Ozone is one of the most efficient disinfectants—in ITER, it will be injected into the heat rejection system to limit the growth of bacteria and other living organisms.

A molecule composed of three oxygen atoms, ozone will be produced on site from the oxygen present in the atmosphere. It will be obtained by circulating a flow of oxygen-enriched gas (90 percent) through a system of glass tubes and high-voltage electrodes.

The installation, housed in three large containers located at the south edge of the cooling basins, comprises four ozone generators. Normally, only three of these "ozonators" will be in operation at a given time, each producing an average of 4 kilograms per hour.

As ozone rapidly dissipates in water, the ozonation system will have to run continuously ... although full capacity will only be required during plasma operation.

Part of India's contribution to the project, the fully equipped containers left the port of Hazira on 27 January and are expected at Fos harbour on 19/20 February.


return to the latest published articles