Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Question of the week | Will fusion run out of fuel?

    One of the paradoxes of fusion, the virtually inexhaustible energy of the future, is that it relies on an element that does not exist—or just barely. Tritium, o [...]

    Read more

  • Managing data | Setting up a robust process

    Are the ITER systems and processes robust enough to manage the technical and project data for a program of ITER's complexity? Will quality information be made a [...]

    Read more

  • Image of the week | Bullseye

    Two perfectly circular structures, looking a lot like archery targets, have been installed on the west-facing wall of the Tokamak Complex. They are not for sh [...]

    Read more

  • Art and science | Seeking new perspectives on fusion

    Standing in the middle of the Tokamak Building, sound artist Julian Weaver positions his 3D microphone near one of the openings of the bioshield to record the s [...]

    Read more

  • Worksite photos | The view one never tires of

    For the past three-and a half years, ITER Communication has been documenting construction progress from the top of the tallest crane on the ITER worksite. Altho [...]

    Read more

Of Interest

See archived entries

Ozonators on their way

Ozone will be produced on site by concentrating oxygen from the atmosphere and circulating the oxigen-enriched gaz through a system of glass tubes and high-voltage electrodes—a process called ''Corona discharge''. (Click to view larger version...)
Ozone will be produced on site by concentrating oxygen from the atmosphere and circulating the oxigen-enriched gaz through a system of glass tubes and high-voltage electrodes—a process called ''Corona discharge''.
Ozone is one of the most efficient disinfectants—in ITER, it will be injected into the heat rejection system to limit the growth of bacteria and other living organisms.

A molecule composed of three oxygen atoms, ozone will be produced on site from the oxygen present in the atmosphere. It will be obtained by circulating a flow of oxygen-enriched gas (90 percent) through a system of glass tubes and high-voltage electrodes.

The installation, housed in three large containers located at the south edge of the cooling basins, comprises four ozone generators. Normally, only three of these "ozonators" will be in operation at a given time, each producing an average of 4 kilograms per hour.

As ozone rapidly dissipates in water, the ozonation system will have to run continuously ... although full capacity will only be required during plasma operation.

Part of India's contribution to the project, the fully equipped containers left the port of Hazira on 27 January and are expected at Fos harbour on 19/20 February.


return to the latest published articles