Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • A world in itself

    From a height of some 50 metres, you have the entire ITER worksite at your feet. The long rectangle of the Diagnostics Building stands out in the centre, with [...]

    Read more

  • US completes toroidal field deliveries for ITER

    The US Domestic Agency achieved a major milestone in February by completing the delivery of all US-supplied toroidal field conductor to the European toroidal fi [...]

    Read more

  • Thin diagnostic coils to be fitted into giant magnets

    Last week was marked by the first delivery of diagnostic components—Continuous External Rogowski (CER) coils—from the European Domestic Agency to the ITER Organ [...]

    Read more

  • Addressing the challenge of plasma disruptions

    Plasma disruptions are fast events in tokamak plasmas that lead to the complete loss of the thermal and magnetic energy stored in the plasma. The plasma control [...]

    Read more

  • Blending (almost) seamlessly into the landscape

    Located in the foothills of the French Pre-Alps, the ITER installation blends almost seamlessly into the landscape. The architects' choice ofmirror-like steel c [...]

    Read more

Of Interest

See archived articles

Ozonators on their way

Ozone will be produced on site by concentrating oxygen from the atmosphere and circulating the oxigen-enriched gaz through a system of glass tubes and high-voltage electrodes—a process called ''Corona discharge''. (Click to view larger version...)
Ozone will be produced on site by concentrating oxygen from the atmosphere and circulating the oxigen-enriched gaz through a system of glass tubes and high-voltage electrodes—a process called ''Corona discharge''.
Ozone is one of the most efficient disinfectants—in ITER, it will be injected into the heat rejection system to limit the growth of bacteria and other living organisms.

A molecule composed of three oxygen atoms, ozone will be produced on site from the oxygen present in the atmosphere. It will be obtained by circulating a flow of oxygen-enriched gas (90 percent) through a system of glass tubes and high-voltage electrodes.

The installation, housed in three large containers located at the south edge of the cooling basins, comprises four ozone generators. Normally, only three of these "ozonators" will be in operation at a given time, each producing an average of 4 kilograms per hour.

As ozone rapidly dissipates in water, the ozonation system will have to run continuously ... although full capacity will only be required during plasma operation.

Part of India's contribution to the project, the fully equipped containers left the port of Hazira on 27 January and are expected at Fos harbour on 19/20 February.


return to the latest published articles