Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • The crown | Unique but inspired by history

    On the floor of the vast amphitheatre that will accommodate the ITER machine, one of the most complex and most strategic structures of the Tokamak Building is t [...]

    Read more

  • Image of the week | Moving into place

    The two quench tanks that were sitting in the holding area on the edge of the ITER premises near the car park moved onto the ITER platform today. A remotely [...]

    Read more

  • Construction | ENGAGE celebrates 8 years at ITER

    On 13 April, the ENGAGE consortium celebrated its eight-year anniversary at ITER. The celebration itself was unique: hosted at the offices of La Provence, the d [...]

    Read more

  • Plasma physics | Be clean, be strong

    To achieve maximum fusion efficiency in a tokamak device it is essential to limit the impurities in the plasma. But this can be a challenge, as interaction betw [...]

    Read more

  • Coil power supply | Switching network tested in Russia

    Plasma could not be created in the ITER vacuum vessel without switching network units, whose operation creates the voltage that 'ionizes*' the cloud of fuel ato [...]

    Read more

Of Interest

See archived articles

Ozonators on their way

Ozone will be produced on site by concentrating oxygen from the atmosphere and circulating the oxigen-enriched gaz through a system of glass tubes and high-voltage electrodes—a process called ''Corona discharge''. (Click to view larger version...)
Ozone will be produced on site by concentrating oxygen from the atmosphere and circulating the oxigen-enriched gaz through a system of glass tubes and high-voltage electrodes—a process called ''Corona discharge''.
Ozone is one of the most efficient disinfectants—in ITER, it will be injected into the heat rejection system to limit the growth of bacteria and other living organisms.

A molecule composed of three oxygen atoms, ozone will be produced on site from the oxygen present in the atmosphere. It will be obtained by circulating a flow of oxygen-enriched gas (90 percent) through a system of glass tubes and high-voltage electrodes.

The installation, housed in three large containers located at the south edge of the cooling basins, comprises four ozone generators. Normally, only three of these "ozonators" will be in operation at a given time, each producing an average of 4 kilograms per hour.

As ozone rapidly dissipates in water, the ozonation system will have to run continuously ... although full capacity will only be required during plasma operation.

Part of India's contribution to the project, the fully equipped containers left the port of Hazira on 27 January and are expected at Fos harbour on 19/20 February.


return to the latest published articles