Subscribe options

Select your newsletters:

Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Port cells | All 46 doors in place

    In ITER, ordinary objects and features often take on an awesome dimension. Take the doors that seal off the port cells around the Tokamak for instance. Doors th [...]

    Read more

  • Toroidal field coils | Two make a pair

    One of the essential 'building blocks' of the ITER Tokamak is the pre-assembly of two toroidal field coils, one vacuum vessel sector and corresponding panels of [...]

    Read more

  • Industrial milestone | Cryostat manufacturing comes to an end in India

    With a flag-off ceremony on 30 June, India's L&T Heavy Engineering marked the end of an eight-year industrial adventure—the manufacturing of the ITER cryost [...]

    Read more

  • Local partners | A celebration for ITER's "vital artery"

    ITER is made possible through the work of thousands of scientists, engineers, workers of all trades and industries across the globe. It is also made possible by [...]

    Read more

  • Photo reportage | Travelling with a coil

    From the salt marshes of the inland sea Étang-de-Berre to the rolling hills around the ITER site (with a view of some of the highest alpine summits) an ITER con [...]

    Read more

Of Interest

See archived entries

The European steel that doesn't fear neutrons

At the High Flux Reactor (Petten, the Netherlands), EUROFER97 samples will be exposed to the same neutron radiation and temperature as in ITER. (Click to view larger version...)
At the High Flux Reactor (Petten, the Netherlands), EUROFER97 samples will be exposed to the same neutron radiation and temperature as in ITER.
European contractors have begun testing a candidate material for fusion reactors—a low-activation steel known as EUROFER97 that offers good resistance to high heat flux and neutron irradiation.

The European Domestic Agency has chosen EUROFER97 for the two Test Blanket Modules that it will test in ITER—the Helium-Cooled Pebble-Bed (HCPB) and the Helium-Cooled Lead Lithium (HCLL). By testing tritium concepts on ITER in a real fusion environment, scientists have a unique opportunity to explore the most promising techniques for tritium breeding that will be a critical technology for next-phase fusion devices.

Based on a contract signed with Studsvik (Sweden) in 2015, a series of tests will be performed to learn more about the physical and mechanical properties of EUROFER97.

With the help of Studsvik subcontractor NRG, testing has begun at the High Flux Reactor in Petten, the Netherlands, on samples of the material. By exposing the candidate steel to the same neutron radiation and temperature as in ITER the tests aim to demonstrate that EUROFER97 is sufficiently resistant.

After each irradiation phase, the metal will be transported back to Studsvik for detailed technical analysis. Researchers will look particularly at the brittleness of the material after irradiation, the microscopic changes that have taken place, and the extent to which material strength is affected.

Tests are expected to continue through early 2018.

Please see the original article on the European Domestic Agency website.
Click here for more on the tritium breeding program at ITER.




return to the latest published articles