Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Vacuum components | Shake, rattle, and... qualify!

    A public-private testing partnership certified that ITER's vacuum components can withstand major seismic events. Making sure the ITER tokamak will be safe in th [...]

    Read more

  • Feeders | Delivering the essentials

    Like a circle of giant syringes all pointing inward, the feeders transport and deliver the essentials to the 10,000-tonne ITER magnet system—that is, electrical [...]

    Read more

  • Image of the week | It's FAB season

    It's FAB season at ITER. Like every year since 2008, the Financial Audit Board (FAB) will proceed with a meticulous audit of the project's finances, siftin [...]

    Read more

  • Disruption mitigation | Final design review is a major step forward

    The generations of physicists, engineers, technicians and other specialists who have worked in nuclear fusion share a common goal, dedication and responsibility [...]

    Read more

  • Image of the week | Like grasping a bowl of cereal

    Contrary to the vast majority of ITER machine components, the modules that form the central solenoid cannot be lifted by way of hooks and attachments. The 110-t [...]

    Read more

Of Interest

See archived entries

The European steel that doesn't fear neutrons

At the High Flux Reactor (Petten, the Netherlands), EUROFER97 samples will be exposed to the same neutron radiation and temperature as in ITER. (Click to view larger version...)
At the High Flux Reactor (Petten, the Netherlands), EUROFER97 samples will be exposed to the same neutron radiation and temperature as in ITER.
European contractors have begun testing a candidate material for fusion reactors—a low-activation steel known as EUROFER97 that offers good resistance to high heat flux and neutron irradiation.

The European Domestic Agency has chosen EUROFER97 for the two Test Blanket Modules that it will test in ITER—the Helium-Cooled Pebble-Bed (HCPB) and the Helium-Cooled Lead Lithium (HCLL). By testing tritium concepts on ITER in a real fusion environment, scientists have a unique opportunity to explore the most promising techniques for tritium breeding that will be a critical technology for next-phase fusion devices.

Based on a contract signed with Studsvik (Sweden) in 2015, a series of tests will be performed to learn more about the physical and mechanical properties of EUROFER97.

With the help of Studsvik subcontractor NRG, testing has begun at the High Flux Reactor in Petten, the Netherlands, on samples of the material. By exposing the candidate steel to the same neutron radiation and temperature as in ITER the tests aim to demonstrate that EUROFER97 is sufficiently resistant.

After each irradiation phase, the metal will be transported back to Studsvik for detailed technical analysis. Researchers will look particularly at the brittleness of the material after irradiation, the microscopic changes that have taken place, and the extent to which material strength is affected.

Tests are expected to continue through early 2018.

Please see the original article on the European Domestic Agency website.
Click here for more on the tritium breeding program at ITER.




return to the latest published articles