Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Summer postcards from the ITER worksite

    The latest harvest of ITER construction photos may be taken from the same point—the tallest crane on site—but there is always an abundance of new detail to be g [...]

    Read more

  • The ring fortress

    ITER'ssteel-and-concretebioshield has become the definingfeature of Tokamak Complex construction. Twolevels only remain to be poured (out of six). It is a 'rin [...]

    Read more

  • The wave factory

    A year ago, work was just beginning on the steel reinforcement for the building's foundation slab. The Radio Frequency Heating Building is now nearing the last [...]

    Read more

  • It's all happening inside

    Since the giant poster was added to the Assembly Hall's completed exterior in June 2016 the building has lookedfrom afar like a finished project. Butinside, tea [...]

    Read more

  • Along skid row

    They look like perfectly aligned emergency housing units. But of course they're not: the 18 concrete structures in the ITER cryoplant are massive pads that will [...]

    Read more

Of Interest

See archived articles

Testing the European gyrotron prototype

Europe's 1 MW gyrotron prototype was manufactured by the French company Thales Electron Devices and tested at the Karlsruhe Institute of Technology (Germany). (Click to view larger version...)
Europe's 1 MW gyrotron prototype was manufactured by the French company Thales Electron Devices and tested at the Karlsruhe Institute of Technology (Germany).
The European Domestic Agency is working with industry to develop the final design of the European gyrotron—an energy-generating device that will contribute to heating the ITER plasma. Two industrial prototypes are in the works: a short-pulse gyrotron, capable of producing radio frequency of 1 MW for a few milliseconds; and a longer-pulse continuous-wave prototype, capable of producing a radiofrequency wave for several minutes.

Excellent results have been obtained for the high-power 1 MW gyrotron prototype manufactured by the French company Thales Electron Devices (TED). During testing, the gyrotron repeatedly produced up to 0.8 MW of output power during periods of 180 seconds—the maximum time possible at the test facility at Karlsruhe Institute of Technology (KIT). Assessed by an independent expert panel, the prototype's performance was compared to ITER technical requirements in terms of power and the quality and stability of the electromagnetic waves.
 
In addition to the gyrotron, testing was carried out on the superconducting magnet necessary for the gyrotron to work. The next steps will now involve joining the gyrotron and magnet together and carrying out testing at the Swiss Plasma Center. Each test session will last for one hour and thus simulate the time needed for these components to work in ITER.

In gyrotron development work, the European Domestic Agency is collaborating with the European Gyrotron Consortium—made up of the European fusion laboratories KIT (Germany), CRPP (Switzerland), HELLAS (Greece), and CNR (Italy), as well as the German USTUTT and Latvian ISSP as third parties—and Thales Electron Devices (France).

Read the full story on the European Domestic Agency website.


return to the latest published articles