Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Test facility | How do electronics react to magnetic fields?

    A tokamak is basically a magnetic cage designed to confine, shape and control the super-hot plasmas that make fusion reactions possible. Inside the ITER Tokamak [...]

    Read more

  • ITER Robots | No two alike

    More than 500 students took part in the latest ITER Robots challenge. Working from the same instructions and technical specifications, they had worked in teams [...]

    Read more

  • Data archiving | Operating in quasi real time

    To accommodate the first real-time system integrated with the ITER control system, new components of the data archiving system have been deployed. Data archivi [...]

    Read more

  • Repairs | Setting the stage for a critical task

    Like in a game of musical chairs—albeit in slow motion and at a massive scale—components in the Assembly Hall are being transferred from one location to another [...]

    Read more

  • Image of the week | There is life on Planet ITER

    Dated April 2023, this new image of the ITER "planet" places the construction site squarely in the middle. One kilometre long, 400 metres wide, the IT [...]

    Read more

Of Interest

See archived entries

Testing the European gyrotron prototype

Europe's 1 MW gyrotron prototype was manufactured by the French company Thales Electron Devices and tested at the Karlsruhe Institute of Technology (Germany). (Click to view larger version...)
Europe's 1 MW gyrotron prototype was manufactured by the French company Thales Electron Devices and tested at the Karlsruhe Institute of Technology (Germany).
The European Domestic Agency is working with industry to develop the final design of the European gyrotron—an energy-generating device that will contribute to heating the ITER plasma. Two industrial prototypes are in the works: a short-pulse gyrotron, capable of producing radio frequency of 1 MW for a few milliseconds; and a longer-pulse continuous-wave prototype, capable of producing a radiofrequency wave for several minutes.

Excellent results have been obtained for the high-power 1 MW gyrotron prototype manufactured by the French company Thales Electron Devices (TED). During testing, the gyrotron repeatedly produced up to 0.8 MW of output power during periods of 180 seconds—the maximum time possible at the test facility at Karlsruhe Institute of Technology (KIT). Assessed by an independent expert panel, the prototype's performance was compared to ITER technical requirements in terms of power and the quality and stability of the electromagnetic waves.
 
In addition to the gyrotron, testing was carried out on the superconducting magnet necessary for the gyrotron to work. The next steps will now involve joining the gyrotron and magnet together and carrying out testing at the Swiss Plasma Center. Each test session will last for one hour and thus simulate the time needed for these components to work in ITER.

In gyrotron development work, the European Domestic Agency is collaborating with the European Gyrotron Consortium—made up of the European fusion laboratories KIT (Germany), CRPP (Switzerland), HELLAS (Greece), and CNR (Italy), as well as the German USTUTT and Latvian ISSP as third parties—and Thales Electron Devices (France).

Read the full story on the European Domestic Agency website.


return to the latest published articles