Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

  • Image of the week | The cryostat top lid, batch after batch

    Batch after batch, the elements for the top lid of the ITER cryostat keep arriving from India. As of today, 7 out of the 12 required segments have been delivere [...]

    Read more

  • Cooling water system | The tanks within a tank

    Deep inside the bowels of the Tokamak Building, the entrance to one of most spectacular rooms of the whole installation resembles that of a broom cupboard. [...]

    Read more

  • ITER assembly | Last major assembly contract signed

    One year after finalizing two major machine assembly contracts, the ITER Organization has chosen the contractors who will carry out assembly and installation ac [...]

    Read more

Of Interest

See archived entries

Spot the differences

In June 1997, the ITER EDA Newsletter—the IAEA publication that chronicled the progress of the ITER Project from 1988 to 1998—published a drawing of the planned layout for the ITER site.

The 1997 layout was for a geographic abstraction referred to as the ''generic'' site. It was designed to accommodate a machine ''as vast as Saint Peter's basilica in Rome''... (Click to view larger version...)
The 1997 layout was for a geographic abstraction referred to as the ''generic'' site. It was designed to accommodate a machine ''as vast as Saint Peter's basilica in Rome''...
Twenty years later, as actual steel-and-concrete structures are sprouting on the ITER site in Saint-Paul-lez-Durance, France, the comparison between the 1997 projection and the 2017 reality is quite instructive.

In 1997 none of the four project participants (Europe, Japan, Russia and the US) had yet proposed to host the installation. As a consequence, the layout was for a geographic abstraction referred to as the "generic" site.

Günther Janeschitz, currently the deputy head of the ITER's Central Integration Office, remembers that for practical reasons the unofficial topological reference was a site located north of San Diego (a), not far from the San Onofre nuclear plant.

The device that was projected at the time was a "serious reactor-class" machine, much bigger (b) than the one that is being built today and aiming for ignition (c). Its dimensions impacted the size of area planned for the scientific installation (100 hectares versus 42 today) and some (but not all) of the buildings on the site layout.

The Tokamak Hall and Pit (1), the Hot Cell Building (4) and the cryoplant (10 and 11), for instance, were planned to be significantly larger.

To the north of the Tokamak Hall and Pit, there is a building on the layout that doesn't exist today—one which occupies a surface almost equivalent to that of the Assembly Hall (2). It is the Laydown Hall (3), where big components like the cryostat lid could be laid down to facilitate maintenance.

The Control Building (23) is located to the south of the RF Coil Fabrication Building (25)— probably a typo for "PF" (poloidal field)—and faces the Laboratory Office Building (22).

Building 22 was relatively small compared to today's Headquarters building. It was not supposed to accommodate more than 250 people—"the management considered that it was enough to run the whole ITER operation," says Günther.

One building that appears to be "missing" is the massive three-storey Radiofrequency Heating Building which, today, stands adjacent to the Assembly Hall. In the 1997 layout, it was located inside the Assembly Hall.

Halfway between the Radwaste Building (8) and the Site Service Building (24), which now stands near the Radiofrequency Heating Building, is a large cylindrical Steam Plant Fuel Tank (19).

What could that have been intended for? "Baking," says Günther. "All tokamaks need to 'bake' their vacuum vessel in order to get rid of impurities and unwanted molecules. At the time, the plan was to use steam at a temperature of 300 °C, but that project was abandoned because of potential corrosion problems."

In today's ITER the baking (at 200 °C) will be done by the water cooling system, with pressurized water heated electrically. There are of course several other differences to be spotted (contributions are welcome!) between today's site and yesteryear's...

In July 1997, the ITER Detailed Design Report, which included the ITER site general layout, was validated by the ITER Council at its 12th meeting in Tampere, Finland.

Dark clouds however were piling up on ITER's horizon. In 1998, the US left the project ... to return only in 2003. By that time, a new ITER design had matured: the machine was to be smaller, less powerful (down to 500 MW from the original 1,500 MW) and of course less costly for the three remaining members, Europe, Japan and Russia (d).

This is the ITER that is being built today.

(a) In mid-1992 three "Joint Work Sites" were established (Garching, Germany; Naka, Japan; and San Diego, US) to facilitate and speed up design work for ITER.
 
(b) "As vast as Saint Peter's basilica in Rome" used to say Robert Aymar, who headed ITER from 1994 to 1997. The projected machine had a large radius of 8.2 metres as compared to today's 6.2 metres and weighed 70,000 tonnes versus 23,000 tonnes today. As a consequence, the diameter of the enclosing cryostat was 6 metres larger.
 
(c) Ignition occurs when the energy transferred to the plasma by the helium particles is sufficient to maintain the conditions for fusion reactions to occur, without external heating.
 
(d) China and Korea joined in 2003, India in late 2005.


return to the latest published articles