Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Question of the week | Will fusion run out of fuel?

    One of the paradoxes of fusion, the virtually inexhaustible energy of the future, is that it relies on an element that does not exist—or just barely. Tritium, o [...]

    Read more

  • Managing data | Setting up a robust process

    Are the ITER systems and processes robust enough to manage the technical and project data for a program of ITER's complexity? Will quality information be made a [...]

    Read more

  • Image of the week | Bullseye

    Two perfectly circular structures, looking a lot like archery targets, have been installed on the west-facing wall of the Tokamak Complex. They are not for sh [...]

    Read more

  • Art and science | Seeking new perspectives on fusion

    Standing in the middle of the Tokamak Building, sound artist Julian Weaver positions his 3D microphone near one of the openings of the bioshield to record the s [...]

    Read more

  • Worksite photos | The view one never tires of

    For the past three-and a half years, ITER Communication has been documenting construction progress from the top of the tallest crane on the ITER worksite. Altho [...]

    Read more

Of Interest

See archived entries

The mega converters

They are the most recent additions to the ITER construction landscape. Long and low, the twin Magnet Power Conversion buildings are going up parallel to the ITER cryoplant. According to the ITER schedule, they will be ready for equipment before the end of the year.
 
Located between the 400 kV electrical switchyard and the Tokamak Complex, the Magnet Power Conversion buildings will furnish DC current to 10,000 tonnes of superconducting magnets. (Click to view larger version...)
Located between the 400 kV electrical switchyard and the Tokamak Complex, the Magnet Power Conversion buildings will furnish DC current to 10,000 tonnes of superconducting magnets.

The relatively straightforward structures—each 150 metres in length—are going up rapidly on the ITER site. At the same time, contractors are finalizing buried technical galleries between the buildings. By the end of the year, contractors will begin installing the equipment. (Click to view larger version...)
The relatively straightforward structures—each 150 metres in length—are going up rapidly on the ITER site. At the same time, contractors are finalizing buried technical galleries between the buildings. By the end of the year, contractors will begin installing the equipment.

Densely packed with electrical converters, switches and fast discharge units, the twin Magnet Power Conversion buildings act as an AC/DC converter for the ITER magnetic system. The procurement responsibility for the electrical equipment in the buildings is shared by Korea (18 converter units and one master control system), China (14 converter units), and Russia (fast discharge units and some 2.5 kilometres of busbars). (Click to view larger version...)
Densely packed with electrical converters, switches and fast discharge units, the twin Magnet Power Conversion buildings act as an AC/DC converter for the ITER magnetic system. The procurement responsibility for the electrical equipment in the buildings is shared by Korea (18 converter units and one master control system), China (14 converter units), and Russia (fast discharge units and some 2.5 kilometres of busbars).



return to the latest published articles