Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Question of the week | Will fusion run out of fuel?

    One of the paradoxes of fusion, the virtually inexhaustible energy of the future, is that it relies on an element that does not exist—or just barely. Tritium, o [...]

    Read more

  • Managing data | Setting up a robust process

    Are the ITER systems and processes robust enough to manage the technical and project data for a program of ITER's complexity? Will quality information be made a [...]

    Read more

  • Image of the week | Bullseye

    Two perfectly circular structures, looking a lot like archery targets, have been installed on the west-facing wall of the Tokamak Complex. They are not for sh [...]

    Read more

  • Art and science | Seeking new perspectives on fusion

    Standing in the middle of the Tokamak Building, sound artist Julian Weaver positions his 3D microphone near one of the openings of the bioshield to record the s [...]

    Read more

  • Worksite photos | The view one never tires of

    For the past three-and a half years, ITER Communication has been documenting construction progress from the top of the tallest crane on the ITER worksite. Altho [...]

    Read more

Of Interest

See archived entries

Cryostat lower cylinder: readied for welding

R.A.

It is one thing to know that the cryostat will be 30 metres high and 30 metres in diameter; it is another to see these dimensions translated into reality.

Tier one of the cryostat lower cylinder is now assembled and readied for welding. Standing on the scaffolding of the sub-component, which is 30 metres in diameter, workers appear tiny. (Click to view larger version...)
Tier one of the cryostat lower cylinder is now assembled and readied for welding. Standing on the scaffolding of the sub-component, which is 30 metres in diameter, workers appear tiny.
In the Cryostat Workshop, as the first tier of the component's lower cylinder is now assembled and readied for welding, the vision is awesome. Look at how tiny the men standing on the scaffolding at the far end appear ...

And imagine how it will feel when tier two is added, effectively doubling the height. The whole section will be more than 10 metres high and the workers will appear even smaller.

The six 60-degree segments, each weighing approximately 40 tonnes, are now precisely positioned, but their alignment must be fine-tuned before welding operations can begin.

In order to reach the required precision in positioning the sectors, the most sophisticated technologies alternate with the most basic tools. ITER cryostat engineer Guillaume Vitupier is seen here next to the manual screw jacks used to fine-tune the segments' alignment. (Click to view larger version...)
In order to reach the required precision in positioning the sectors, the most sophisticated technologies alternate with the most basic tools. ITER cryostat engineer Guillaume Vitupier is seen here next to the manual screw jacks used to fine-tune the segments' alignment.
As is often the case with ITER components, the techniques involved alternate between the most sophisticated technologies (like laser tracking) and the most basic tools — manual screw jacks, chain slings and winches that will be used to correct the segment profiles and achieve the required sub-millimetre precision.

Once the long and complex alignment operations are finalized, welding will begin. The six 5-metre-high weld gaps between the segments will be filled and tier one of the cryostat lower cylinder will be complete.

Similar operations will be performed on tier two, whose six sectors are due to leave India in mid-September.

Once the lower cylinder segment is complete (tier one and tier two), it will be encased in an airtight cocoon and, pending assembly, stored in a dedicated area adjacent to the Cryostat Workshop.


return to the latest published articles