Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite | First pillars for the crane hall

    For the overhead cranes to deliver machine components into the Tokamak assembly pit, the rails that carry them need to be extended some 80 metres beyond the tem [...]

    Read more

  • Transport | 300 tonnes of equipment on its way to ITER

    A specially designed assembly tool and elements of the cryostat and vacuum vessel thermal shields are part of the shipments travelling now from Korea to ITER. W [...]

    Read more

  • Fusion world | A new tokamak in town

    After EAST in China and WEST in France, another of the cardinal points of the compass has been chosen to name a tokamak. Introducing NORTH—the NORdic Tokamak de [...]

    Read more

  • Opportunities | Bringing the ITER Business Forum to Washington

    Every second year, a two-day ITER Business Forum is held to invite existing and potential suppliers for the ITER Project—laboratories, universities, and compani [...]

    Read more

  • World Energy Congress | Fusion "at a time of transition"

    In the United Arab Emirates, Abu Dhabi is often referred to as a tourism hotspot that combines luxury and ancient traditions. In September, Abu Dhabi was in the [...]

    Read more

Of Interest

See archived entries

Fusion world

Wendelstein 7-X resumes operation

Isabella Milch, Max Planck Institut for Plasma Physics

The Wendelstein 7-X stellarator is up and running again, following a shutdown phase dedicated to equipping the machine for longer discharges and higher heating power.

A plasma discharge in the upgraded Wendelstein 7-X stellarator — not your usual D-shaped tokamak plasma... Photo: IPP/Wigner RCP (coloured black-and-white photo) (Click to view larger version...)
A plasma discharge in the upgraded Wendelstein 7-X stellarator — not your usual D-shaped tokamak plasma... Photo: IPP/Wigner RCP (coloured black-and-white photo)
The world's largest fusion device of the stellarator type is back in action. Plasma experiments have resumed after a 15-month shutdown phase, during which over 8,000 graphite wall tiles and ten divertor modules were installed in the plasma vessel. This high-tech cladding that will protect the vessel walls and allow higher temperatures and plasma discharges lasting 10 seconds.

The geometry of the new divertor, with plasma-facing tiles that conform exactly to the twisting contour of the plasma edge, is considered power plant relevant for the first time—particularly in the ratio of the divertor area to the plasma volume.

"We are therefore very excited that we are now able to investigate whether the divertor concept of an optimized stellarator can really work properly," says Project Head Professor Thomas Klinger.

All ten microwave transmitters of the microwave heating system have been brought on line, which will permit higher density and higher temperature plasmas and lead possibly to the enhanced thermal insulation of the plasma in the optimized device. New diagnostic instruments will also allow the observation of plasma turbulence for the first time.

The goal of the Wendelstein 7-X project is to investigate the suitability of the stellarator type of fusion device for a continuous-operation fusion power plant. Following the conclusion of main assembly in 2014 at the Max Planck Institute for Plasma Physics (IPP) in Greifswald, Germany, the machine achieved its first helium plasma in December 2015 and its first hydrogen plasma in February 2016.

 
Read the full press release on the IPP website.


return to the latest published articles