Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Rendezvous | D and T to meet at JET in 2020

    In 2020, for the first time in more than 20 years, a reaction that only occurs in the core of the stars will be produced on Earth in a man-made machine. In the [...]

    Read more

  • On site | MOMENTUM believes in recent graduates

    It is rare for students to leave university and immediately begin work on a globally significant project. But thanks to the graduate program run by the project' [...]

    Read more

  • Tokamak Pit | Big steel elbow in place

    A cryostat feedthrough delivered by the Chinese Domestic Agency has become the first metal component of the machine to be installed in the Tokamak Pit, in an op [...]

    Read more

  • Neutral beam source | Europe awards EUR 20 million contract

    The contract, awarded to ALSYOM-SEIV (ALCEN group, France), launches the manufacturing phase for the beam source that will come on line in 2022 as part of the f [...]

    Read more

  • Image of the week | US Under Secretary of Science tours site

    Five months, almost to the day, after the US Secretary of Energy Rick Perry visited ITER, his deputy, Under Secretary for Science Paul Dabbar, stood by the same [...]

    Read more

Of Interest

See archived entries

Fusion world

Wendelstein 7-X resumes operation

Isabella Milch, Max Planck Institut for Plasma Physics

The Wendelstein 7-X stellarator is up and running again, following a shutdown phase dedicated to equipping the machine for longer discharges and higher heating power.

A plasma discharge in the upgraded Wendelstein 7-X stellarator — not your usual D-shaped tokamak plasma... Photo: IPP/Wigner RCP (coloured black-and-white photo) (Click to view larger version...)
A plasma discharge in the upgraded Wendelstein 7-X stellarator — not your usual D-shaped tokamak plasma... Photo: IPP/Wigner RCP (coloured black-and-white photo)
The world's largest fusion device of the stellarator type is back in action. Plasma experiments have resumed after a 15-month shutdown phase, during which over 8,000 graphite wall tiles and ten divertor modules were installed in the plasma vessel. This high-tech cladding that will protect the vessel walls and allow higher temperatures and plasma discharges lasting 10 seconds.

The geometry of the new divertor, with plasma-facing tiles that conform exactly to the twisting contour of the plasma edge, is considered power plant relevant for the first time—particularly in the ratio of the divertor area to the plasma volume.

"We are therefore very excited that we are now able to investigate whether the divertor concept of an optimized stellarator can really work properly," says Project Head Professor Thomas Klinger.

All ten microwave transmitters of the microwave heating system have been brought on line, which will permit higher density and higher temperature plasmas and lead possibly to the enhanced thermal insulation of the plasma in the optimized device. New diagnostic instruments will also allow the observation of plasma turbulence for the first time.

The goal of the Wendelstein 7-X project is to investigate the suitability of the stellarator type of fusion device for a continuous-operation fusion power plant. Following the conclusion of main assembly in 2014 at the Max Planck Institute for Plasma Physics (IPP) in Greifswald, Germany, the machine achieved its first helium plasma in December 2015 and its first hydrogen plasma in February 2016.

 
Read the full press release on the IPP website.


return to the latest published articles