Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Test facility | How do electronics react to magnetic fields?

    A tokamak is basically a magnetic cage designed to confine, shape and control the super-hot plasmas that make fusion reactions possible. Inside the ITER Tokamak [...]

    Read more

  • ITER Robots | No two alike

    More than 500 students took part in the latest ITER Robots challenge. Working from the same instructions and technical specifications, they had worked in teams [...]

    Read more

  • Data archiving | Operating in quasi real time

    To accommodate the first real-time system integrated with the ITER control system, new components of the data archiving system have been deployed. Data archivi [...]

    Read more

  • Repairs | Setting the stage for a critical task

    Like in a game of musical chairs—albeit in slow motion and at a massive scale—components in the Assembly Hall are being transferred from one location to another [...]

    Read more

  • Image of the week | There is life on Planet ITER

    Dated April 2023, this new image of the ITER "planet" places the construction site squarely in the middle. One kilometre long, 400 metres wide, the IT [...]

    Read more

Of Interest

See archived entries

Fusion world

Record results at KSTAR

Through long-pulse operation, the Korean tokamak KSTAR is capable of contributing to the investigation of the plasma physics of ITER, and future steady-state fusion power plants. (Click to view larger version...)
Through long-pulse operation, the Korean tokamak KSTAR is capable of contributing to the investigation of the plasma physics of ITER, and future steady-state fusion power plants.
Experiments in the Korean tokamak KSTAR in 2017 achieved record-length periods of ELM suppression by the application of three-dimensional magnetic fields with internal coils, which is the same approach for ELM control in ITER.

Edge localized modes (ELMs), which can occur during high-performance operation mode (H-mode), expel bursts of energy and particles from the plasma. The energy released can cause erosion in surrounding material, with potential impact on the lifetime of plasma-facing materials.

The new KSTAR results demonstrate the robustness of the ELM control scheme adopted for ITER. They have also provided interesting information regarding the influence of the effects of the plasma shape on the robustness of this scheme for its practical application in ITER.

In addition, robust ELM suppression has been obtained in KSTAR with 3D magnetic fields with one and two symmetry periods  in the toroidal direction (n = 1, 2) over a range of plasma currents and toroidal fields, whose ratios corresponds to the expected range for long-pulse operation in ITER (burns of 1,000 to 3,000 seconds). This indicates that there might be more flexibility regarding the shape of the 3D magnetic field that needs to be applied for ELM control in the ITER long-pulse scenarios than previously considered.


return to the latest published articles