Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Plasma physics | Be clean, be strong

    To achieve maximum fusion efficiency in a tokamak device it is essential to limit the impurities in the plasma. But this can be a challenge, as interaction betw [...]

    Read more

  • Coil power supply | Switching network tested in Russia

    Plasma could not be created in the ITER vacuum vessel without switching network units, whose operation creates the voltage that 'ionizes*' the cloud of fuel ato [...]

    Read more

  • Star struck | For Silicon Valley philanthropist ITER is "the only way"

    One is planning to send tiny spacecrafts to the nearest stellar system; the other aims to bring the power of the stars to Earth. Yuri Milner, Russian-born entre [...]

    Read more

  • Cryogenics | How low can you go?

    The realm of the extremely cold is fascinating. Temperatures driving toward absolute zero, 'steaming' cryogenic liquids and hovering magnets create an air of ma [...]

    Read more

  • Stakeholders | Europe's vote of confidence

    The bottom line is always what matters. For the statement issued on Thursday 12 April by the European Council of Ministers, the key phrase was in the final poin [...]

    Read more

Of Interest

See archived articles

Power conversion

China delivers four high-tech transformers

R.A.

The four converter-transformers that passed the ITER gate at 3:00 a.m. last Wednesday are part of a set of 16 to be installed outside the twin Magnet Power Converter Buildings. (Fourteen are needed for First Plasma, an extra two for subsequent operations.)

Technology for the convertor-transformers draws from four technological know-how: aluminum smelters for high DC current; motor speed drive for current inversion and High Voltage Direct Current (HVDC) power transmission lines for bypass systems. (Click to view larger version...)
Technology for the convertor-transformers draws from four technological know-how: aluminum smelters for high DC current; motor speed drive for current inversion and High Voltage Direct Current (HVDC) power transmission lines for bypass systems.
Procured by China, each of the 128-tonne converter-transformers will be paired to a rectifier and connected to the machine's ring-shaped poloidal field coils. The transformers will bring down the 66 kV AC industrial current to approximately 1 kV; the rectifiers will convert it into DC current, just like a cell phone or laptop adapter transforms the 110 or 220 volts from the wall plug into 9, 12, or 24 volts of DC current.

The difference, as in everything ITER, is in size and power. "With the exception of aluminium smelters, I can think of no industry that requires DC current higher than ITER," says Ivone Benfatto, head of the ITER Electrical Engineering Division.

However contrary to aluminium smelters, the ITER magnets need to be fed current in two directions in order to control the magnetic fields and optimize the duration of the plasmas. "In designing these very challenging components, we have also drawn from the experience in motor speed drive, like the electrical motors that power high-speed trains, whose current needs to be inverted when the train changes direction or when regenerative braking is activated."

And whereas trains can accept interruptions in current transmission, the ITER magnets can't. High voltage direct current (HVDC) power transmission lines and their bypass systems also provided a third input of industrial knowhow to the design of the ITER converter-transformers.

"Sometimes," muses Ivone, "we tend to forget that some of the components that are delivered to us are technological marvels ..."


return to the latest published articles