Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite | First pillars for the crane hall

    For the overhead cranes to deliver machine components into the Tokamak assembly pit, the rails that carry them need to be extended some 80 metres beyond the tem [...]

    Read more

  • Transport | 300 tonnes of equipment on its way to ITER

    A specially designed assembly tool and elements of the cryostat and vacuum vessel thermal shields are part of the shipments travelling now from Korea to ITER. W [...]

    Read more

  • Fusion world | A new tokamak in town

    After EAST in China and WEST in France, another of the cardinal points of the compass has been chosen to name a tokamak. Introducing NORTH—the NORdic Tokamak de [...]

    Read more

  • Opportunities | Bringing the ITER Business Forum to Washington

    Every second year, a two-day ITER Business Forum is held to invite existing and potential suppliers for the ITER Project—laboratories, universities, and compani [...]

    Read more

  • World Energy Congress | Fusion "at a time of transition"

    In the United Arab Emirates, Abu Dhabi is often referred to as a tourism hotspot that combines luxury and ancient traditions. In September, Abu Dhabi was in the [...]

    Read more

Of Interest

See archived entries

Power conversion

China delivers four high-tech transformers

R.A.

The four converter-transformers that passed the ITER gate at 3:00 a.m. last Wednesday are part of a set of 16 to be installed outside the twin Magnet Power Converter Buildings. (Fourteen are needed for First Plasma, an extra two for subsequent operations.)

Technology for the convertor-transformers draws from four technological know-how: aluminum smelters for high DC current; motor speed drive for current inversion and High Voltage Direct Current (HVDC) power transmission lines for bypass systems. (Click to view larger version...)
Technology for the convertor-transformers draws from four technological know-how: aluminum smelters for high DC current; motor speed drive for current inversion and High Voltage Direct Current (HVDC) power transmission lines for bypass systems.
Procured by China, each of the 128-tonne converter-transformers will be paired to a rectifier and connected to the machine's ring-shaped poloidal field coils. The transformers will bring down the 66 kV AC industrial current to approximately 1 kV; the rectifiers will convert it into DC current, just like a cell phone or laptop adapter transforms the 110 or 220 volts from the wall plug into 9, 12, or 24 volts of DC current.

The difference, as in everything ITER, is in size and power. "With the exception of aluminium smelters, I can think of no industry that requires DC current higher than ITER," says Ivone Benfatto, head of the ITER Electrical Engineering Division.

However contrary to aluminium smelters, the ITER magnets need to be fed current in two directions in order to control the magnetic fields and optimize the duration of the plasmas. "In designing these very challenging components, we have also drawn from the experience in motor speed drive, like the electrical motors that power high-speed trains, whose current needs to be inverted when the train changes direction or when regenerative braking is activated."

And whereas trains can accept interruptions in current transmission, the ITER magnets can't. High voltage direct current (HVDC) power transmission lines and their bypass systems also provided a third input of industrial knowhow to the design of the ITER converter-transformers.

"Sometimes," muses Ivone, "we tend to forget that some of the components that are delivered to us are technological marvels ..."


return to the latest published articles