Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Question of the week | Will fusion run out of fuel?

    One of the paradoxes of fusion, the virtually inexhaustible energy of the future, is that it relies on an element that does not exist—or just barely. Tritium, o [...]

    Read more

  • Managing data | Setting up a robust process

    Are the ITER systems and processes robust enough to manage the technical and project data for a program of ITER's complexity? Will quality information be made a [...]

    Read more

  • Image of the week | Bullseye

    Two perfectly circular structures, looking a lot like archery targets, have been installed on the west-facing wall of the Tokamak Complex. They are not for sh [...]

    Read more

  • Art and science | Seeking new perspectives on fusion

    Standing in the middle of the Tokamak Building, sound artist Julian Weaver positions his 3D microphone near one of the openings of the bioshield to record the s [...]

    Read more

  • Worksite photos | The view one never tires of

    For the past three-and a half years, ITER Communication has been documenting construction progress from the top of the tallest crane on the ITER worksite. Altho [...]

    Read more

Of Interest

See archived entries

Electrical power

A cascade of transformations

R.A.

Before it reaches the Tokamak's superconducting magnets, the electrical power from the 400 kV switchyard undergoes a cascade of transformations.

In July, the 130-tonne transformer (right) and the 4-metre-long busbar that connects it to the AC/DC converter were successfully tested at the Hyosung Factory in Changwon, Korea. The ''mushroom-like'' structures in the background belong to the high-tension testing equipment. (Click to view larger version...)
In July, the 130-tonne transformer (right) and the 4-metre-long busbar that connects it to the AC/DC converter were successfully tested at the Hyosung Factory in Changwon, Korea. The ''mushroom-like'' structures in the background belong to the high-tension testing equipment.
First, three very large pulsed power electrical network transformers—situated adjacent to the switchyard—bring the voltage down from 400 kV to 66 kV and 22 kV. This reduced voltage is then fed to the converter transformers inside of the twin Magnet Power Conversion buildings.

The converter transformers are each dedicated to a specific magnet system (central solenoid, toroidal field coils, poloidal field coils, correction coils). Their role is to bring down the voltage further—to approximately 1 kV. (The precise voltage is determined by the individual magnet system.)

All 44 converter transformers are paired with large "rectifiers" whose function is to convert the 1 kV AC current into direct current (DC), just like an "adapter" for laptops or cell phones transforms the 110 or 220 volts from the AC current into 9, 12, or 24 volts of DC current.

China is responsible for procuring the converter transformers and rectifiers for the poloidal field coils; Korea for all the other superconducting magnets; and Russia for the 25 km of busbars that connect the different components inside the Power Conversion Buildings. (Aluminium busbars in ITER can carry up to 7,000 times more current than a washing machine power cable.)

In July, the first of twelve transformers required for the central solenoid magnet system was successfully tested at the Hyosung Factory in Changwon, Korea, along with the set of high AC current busbars to connect it to the corresponding rectifier. Delivery to ITER can now be anticipated early next year.

Six of the central solenoid transformers will need to be in place by First Plasma, while six others will be installed at a later phase.


return to the latest published articles