Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Neutral beam power | "Outside and beyond anything"

    In an empty plot on the ITER platform, preparatory works have started for the construction of two new buildings. From the outside, they will look like ordinary [...]

    Read more

  • Systems installation | Anticipation and flexibility

    It is a subterranean world of scaffolding and supports, piping and cables, concrete and embedded plates. To the untrained eye, the activity underway in the base [...]

    Read more

  • Image of the week | Keeping an eye on the hot (double) pancake

    An ITER ring-shaped coil begins its existence as cable-in-conduit conductor, wound into 'double pancakes' that are eventually stacked one upon the other to form [...]

    Read more

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

Of Interest

See archived entries

Tokamak Complex

Interior design

Fresh from the offices of the Design & Construction Integration Division, this cutaway drawing peels back the walls to reveal the interior layout of the Tokamak Complex.

 (Click to view larger version...)
Sixty metres at its tallest point, the Complex itself will represent 360,000 tonnes at its completion (concrete, steel, roof structure and all equipment), reposing on or within a Seismic Pit reinforcement structure representing another 80,000 tonnes (basemat and walls).

This cutaway shows the Tokamak Complex as it is going up across from the ITER Headquarters building, with the Diagnostic Building on the right and the Tritium Building on the left.

One of the striking features that can be see when you enlarge the image is the number of small squares on the walls, floors and ceilings. Numbering in the tens of thousands, these are the embedded plates, positioned throughout the structure where equipment will need to be attached.

In the centre, the concrete bioshield forms a circular well where the ITER Tokamak will be assembled from bottom to top.

Once the Tokamak Building reaches the height of the Assembly Hall, the temporary wall between them will be removed and a large open space will be created for the back-and-forth of the travelling cranes as they deliver components for installation in the machine.

Match the numbers on the cutaway with the information below for more details on Tokamak Complex construction:

01 — The lifting system in the Tokamak/Assembly Hall is made up of a massive 1,500-tonne double overhead bridge crane and two 50-tonne auxiliary cranes. They were installed respectively in June and December 2016.
 
02 — Steel reinforcement is presently being installed at Level 3 of the bioshield. L3 will be the first level that will have more concrete than openings; L4 (the final level of the bioshield) will be an unbroken wall of concrete.
 
03 — At the bottom of the machine a steel-and-concrete "crown" will support the combined mass of the Tokamak and cryostat (23,000 tonnes). A mockup is under construction to demonstrate the full constructability of the structure (see related article).
 
04 — The huge mass of the Tokamak Complex rests on an arrangement of 493 columns, each topped by anti-seismic bearing. Separating the columns from the rest of the building is the B2 basemat, seen as a thick purple line under the cryostat crown.
 
05 — Gallery at upper port level.
 
06 — Gallery at equatorial port level.
 
07 — Gallery at lower port level.
 
08 — Work is evolving at L3 level in the Diagnostics Building (the final level). Teams are preparing to pour walls and columns.
 
09 — A 10-metre-high "vault" will accommodate the Tokamak's cooling water system (TCWS).
 
10 — TCWS vault annex.
 
11 — Work is evolving at L1 level in the Tritium Building.
 
12 — The interspace between the seismic pit and the Tokamak Complex building varies from 1.5 metres in the lower region to 2.5 metres in the upper region. In case of a seismic event, this interspace will accommodate the lateral displacement of the entire Complex, moving on its B2 basemat slab.
 
13 — Cables for the lightning protection system.



return to the latest published articles