Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Poloidal field magnets | The last ring

    As the massive ring-shaped coil inched its way from the Poloidal Field Coils Winding Facility, where it was manufactured, to the storage facility nearby where i [...]

    Read more

  • Heat rejection | White "smoke" brings good news

    Like a plume of white smoke rising from a cardinals' conclave to announce the election of a new pope, the tenuous vapour coming from one of the ITER cooling cel [...]

    Read more

  • WEC 2024 | Energy on centre stage

    The global players in the energy sector convened in Rotterdam last week for the 26th edition of the World Energy Congress (WEC). The venue was well chosen, wit [...]

    Read more

  • Fusion world | The EU blueprint for fusion energy

    The EU Blueprint for Fusion Energy workshop, convened by the European Commission's Directorate-General for Energy, brought together key stakeholders in the fiel [...]

    Read more

  • Neutral beam injection | ELISE achieves target values for ITER

    Researchers at the Max Planck Institute for Plasma Physics in Garching, Germany, have generated the ion current densities required for ITER neutral beam injecti [...]

    Read more

Of Interest

See archived entries

Computer-Aided Design

A new platform with Australia

In September 2016, the signature of a Cooperation Agreement between the Australian Nuclear Science and Technology Organisation (ANSTO) and the ITER Organization paved the way for Australian participation in the ITER Project. In the first Implementing Agreement of the collaboration, scientists from both organizations and the Australian National University will be joining forces to design the Doppler coherence imaging diagnostic and in particular establish the infrastructure necessary to work with ITER.

Boundary flow measurements in the DIII-D tokamak (left) and the synthetic (expected or ''modelled'') image plasma flow measurements in ITER (right). These measurements will help in understanding heat and particle transport in ITER. (Click to view larger version...)
Boundary flow measurements in the DIII-D tokamak (left) and the synthetic (expected or ''modelled'') image plasma flow measurements in ITER (right). These measurements will help in understanding heat and particle transport in ITER.
The Doppler coherence imaging diagnostic is part of operational systems and will be used in ITER to deliver detailed images of plasma flows, temperatures, densities, internal fields and structures.

This particular imaging technique is unique in its ability to measure the supersonic plasma flows and extreme temperatures in the ITER plasma boundary region, with a degree of resolution required to address these measurements. Data obtained will allow scientists to validate beryllium migration models, which in turn will provide a predictive capability for divertor performance and control. (Understanding the cycle of material erosion from ITER's inner wall—as well as the transport and deposition of beryllium particles—is one of the key issues for the successful and safe operation of the ITER Tokamak and future devices.)

No project can start without a proper infrastructure. An important part of the first Implementing Agreement, therefore, is to establish a new CAD replication site at ANSTO and to allow the Australian team, working from both Sydney and Canberra, to progress their work in full compliance with ITER Organization rules. So, even though Australia is very far away, the design teams will have almost live access to all the models that they need to do their job. This infrastructure is planned for release in the coming months.

Richard Garrett, Senior Advisor at ANSTO, said "We are very excited to move forward with this next step."

An Australian team from ANSTO and the Australian National University (ANU), as well as scientists from ITER, will be collaborating to design the Doppler coherence imaging diagnostic and this work will be facilitated by future agreements. In addition, next year, a number of Australian team members will be visiting the ITER Organization to develop the ITER-Australia integrated team and prepare the Concept Design Review for work relating to the Doppler coherence imaging project.


return to the latest published articles