Subscribe options

Select your newsletters:

Please enter your email address:


News & Media

Latest ITER Newsline

  • Blanket shield blocks | Full-scale prototype passes key test in China

    A full-scale prototype of a blanket shield block manufactured in China successfully passed acceptance tests, including the challenging hot helium leak testing i [...]

    Read more

  • US Congressional hearing | Strong bipartisan support expressed

    'For I dipped into the future, far as human eye could see,Saw the Vision of the world and all the wonder that would be.' In the hearing room of the United Sta [...]

    Read more

  • Plasma heating | Demonstrating neutral beam injection at ITER scale

    The critical technologies of neutral beam injection—the workhorse of ITER plasma heating—will be demonstrated in advance of ITER operation at a test facility lo [...]

    Read more

  • Tokamak Complex | A temporary roof for the bioshield

    In August of last year, a circular platform—the 'lid'—was installed deep inside of the ITER bioshield, effectively splitting the well-shaped work area into two. [...]

    Read more

  • Fusion world | 210 papers presented at KSTAR conference

    The superconducting tokamak KSTAR has been in operation at the National Fusion Research Institute in Daejeon, Korea, since 2008. The KSTAR conference, held a [...]

    Read more

Of Interest

See archived articles

Computer-Aided Design

A new platform with Australia

Martin Kocan, Port Plugs & Diagnostics Integration Division

In September 2016, the signature of a Cooperation Agreement between the Australian Nuclear Science and Technology Organisation (ANSTO) and the ITER Organization paved the way for Australian participation in the ITER Project. In the first Implementing Agreement of the collaboration, scientists from both organizations and the Australian National University will be joining forces to design the Doppler coherence imaging diagnostic and in particular establish the infrastructure necessary to work with ITER.

Boundary flow measurements in the DIII-D tokamak (left) and the synthetic (expected or ''modelled'') image plasma flow measurements in ITER (right). These measurements will help in understanding heat and particle transport in ITER. (Click to view larger version...)
Boundary flow measurements in the DIII-D tokamak (left) and the synthetic (expected or ''modelled'') image plasma flow measurements in ITER (right). These measurements will help in understanding heat and particle transport in ITER.
The Doppler coherence imaging diagnostic is part of operational systems and will be used in ITER to deliver detailed images of plasma flows, temperatures, densities, internal fields and structures.

This particular imaging technique is unique in its ability to measure the supersonic plasma flows and extreme temperatures in the ITER plasma boundary region, with a degree of resolution required to address these measurements. Data obtained will allow scientists to validate beryllium migration models, which in turn will provide a predictive capability for divertor performance and control. (Understanding the cycle of material erosion from ITER's inner wall—as well as the transport and deposition of beryllium particles—is one of the key issues for the successful and safe operation of the ITER Tokamak and future devices.)

No project can start without a proper infrastructure. An important part of the first Implementing Agreement, therefore, is to establish a new CAD replication site at ANSTO and to allow the Australian team, working from both Sydney and Canberra, to progress their work in full compliance with ITER Organization rules. So, even though Australia is very far away, the design teams will have almost live access to all the models that they need to do their job. This infrastructure is planned for release in the coming months.

Richard Garrett, Senior Advisor at ANSTO, said "We are very excited to move forward with this next step."

An Australian team from ANSTO and the Australian National University (ANU), as well as scientists from ITER, will be collaborating to design the Doppler coherence imaging diagnostic and this work will be facilitated by future agreements. In addition, next year, a number of Australian team members will be visiting the ITER Organization to develop the ITER-Australia integrated team and prepare the Concept Design Review for work relating to the Doppler coherence imaging project.

return to the latest published articles