Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Art and ITER | Two sisters, two suns and a monument to fusion

    Amid the gentle slopes of Asciano, Italy, there stands a stone window that frames the Sun on the summer solstice. It looks as though it might have always been t [...]

    Read more

  • Staff | The men and women of ITER

    They hail from Ahmedabad and Prague ... from Naka and Moscow ... from Seoul, Hefei, Atlanta and hundreds of other towns and cities across the 35 nations partici [...]

    Read more

  • ITER Talks | All about ITER and fusion

    Beginning this autumn, the ITER Organization will be launching a new video series to inform, inspire and educate. The first video—introducing the series and off [...]

    Read more

  • Image of the week | A majestic components enters the stage

    The floor of the Assembly Hall is an ever-changing stage. Like characters in a grand production, components of all size and shapes make a spectacular entry, pl [...]

    Read more

  • Magnet system | A set of spares for the long journey

    In about five years, ITER will embark on a long journey through largely uncharted territory. Conditions will be harsh and—despite all the calculations, modellin [...]

    Read more

Of Interest

See archived entries

Central solenoid

All conductor received

Officials from the US and Japanese fusion energy programs were at General Atomics' Magnet Technologies Center in California in early May to celebrate the delivery of the final spool of central solenoid conductor.

John Smith, manager for General Atomics of the ITER central solenoid project, speaks at an event marking the delivery of the final spool of conductor to the central solenoid facility near San Diego. Photo: GA (Click to view larger version...)
John Smith, manager for General Atomics of the ITER central solenoid project, speaks at an event marking the delivery of the final spool of conductor to the central solenoid facility near San Diego. Photo: GA
The ITER central solenoid—five stories, 1,000 tonnes—will be the largest pulsed superconducting magnet in the world. From its position at the centre of the ITER machine it will drive more than 15 million amperes of current in the plasma, contributing to maintaining long plasma pulses and to shaping the plasma.

On 3 May, a ceremony was held to mark the delivery by Japan of the 51st and final spool of niobium-tin conductor—the material that General Atomics is using to fabricate the ITER central solenoid.

"This is an event worth celebrating, as we now have all of the superconductor needed to complete the ITER central solenoid modules," said John Smith, who manages the central solenoid manufacturing program for General Atomics. "Japan's QST and industrial partners were able to manufacture and deliver more than 25 miles [43 kilometres] of this precisely manufactured conductor, which is no small feat."

The US is responsible for central solenoid fabrication and assembly—scope which includes design, R&D, module fabrication (from conductor supplied by Japan), associated structure fabrication, assembly tooling, bus extensions, and cooling connections.

Japan's National Institutes for Quantum and Radiological Science and Technology (QST)—which is overseeing the procurement of ITER components allocated to Japan—has been responsible for the procurement of all central solenoid conductor, including spares.

Manufacture of the conductor involved more than 150 employees working for over five years at multiple companies in Japan and Korea. The strand and cable was manufactured by Japan Superconductor Technology, Furukawa Electric and Kiswire Advanced Technology with e-Energy and the stainless steel jacket was made by KOBELCO Steel Tube. Nippon Steel and Sumikin Engineering then combined the cable and jacket into the conductor that was delivered to General Atomics.   

To transform the conductor, General Atomics has developed an innovative winding process that coils approximately 5 kilometres of conductor into a central solenoid module. Each module is made up of 40 layers of conductor with 14 turns in each layer. Six of the 110-tonne modules will be stacked into an 18-metre-tall assembly, with a seventh module serving as a spare. Once wound, each module goes through a five-week heating process in which the modules are heated to 650 °C in a convection oven to convert the niobium-tin wire into the superconducting material. General Atomics currently has five modules in different states of fabrication. 

More about General Atomics' contributions to ITER here.
More about QST here.


return to the latest published articles