Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite | First pillars for the crane hall

    For the overhead cranes to deliver machine components into the Tokamak assembly pit, the rails that carry them need to be extended some 80 metres beyond the tem [...]

    Read more

  • Transport | 300 tonnes of equipment on its way to ITER

    A specially designed assembly tool and elements of the cryostat and vacuum vessel thermal shields are part of the shipments travelling now from Korea to ITER. W [...]

    Read more

  • Fusion world | A new tokamak in town

    After EAST in China and WEST in France, another of the cardinal points of the compass has been chosen to name a tokamak. Introducing NORTH—the NORdic Tokamak de [...]

    Read more

  • Opportunities | Bringing the ITER Business Forum to Washington

    Every second year, a two-day ITER Business Forum is held to invite existing and potential suppliers for the ITER Project—laboratories, universities, and compani [...]

    Read more

  • World Energy Congress | Fusion "at a time of transition"

    In the United Arab Emirates, Abu Dhabi is often referred to as a tourism hotspot that combines luxury and ancient traditions. In September, Abu Dhabi was in the [...]

    Read more

Of Interest

See archived entries

Cryoplant

Filled from floor to ceiling

The ITER cryoplant used to be a vast echoey chamber with 5,400 m² of interior space divided into two areas; now, it is filled from floor to ceiling with industrial equipment. Three parties are sharing responsibility for the plant's procurement: the ITER Organization, responsible for the liquid helium plants; Europe, in charge of the liquid nitrogen plant and auxiliary systems as well as the construction of the cryoplant infrastructure on site; and India, whose contractors are procuring the cryolines and cryodistribution components.

 (Click to view larger version...)
The installation of helium compressor skids on concrete pads was completed earlier this year. Aligned in three rows, each one linked to a helium cold box, the compressors will supply the cold boxes with gaseous helium at 21.8 bars and eventually provide the necessary gas flow for the supercritical helium cooling needs of the Tokamak. Team members can be seen standing on the pads in this picture, four metres above ground level. As a final installation step, a special grouting—part cement, part resin—will be poured to federate the pad and the skid into a mechanically homogeneous structure.

 (Click to view larger version...)
Most of the planned components are now installed in the Compressor Building, drastically reducing the space for circulation. Here, a corridor has been created between the huge oil removal system skids of two rows of the liquid helium plant compression station.

 (Click to view larger version...)
For the nitrogen plant, the first phase of centrifugal compressor installation was achieved this month. These compressors (which, at 4.5 MW, are the biggest of the cryoplant) are also housed in the Compressor Building, next to the 18 compressors that will be required for the operation of the helium refrigerators. This month, the compressors were pre-aligned with their motors and after-coolers/associated piping were installed.

 (Click to view larger version...)
Close coordination is required of the different teams that are active in the cryoplant. Co-activity issues are addressed and resolved in dedicated coordination meetings, or in more informal meetings on site. In this picture, representatives of various stakeholders (the ITER Organization, the European Domestic Agency, equipment manufacturer Air Liquide, mechanical installation contractors, and ITER's Construction Management-as-Agent) are assessing potential difficulties in co-activity related to the installation of helium storage gasbags up near the roof at the same time as some HVAC (ventilation) equipment.


return to the latest published articles