Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

  • Image of the week | The cryostat top lid, batch after batch

    Batch after batch, the elements for the top lid of the ITER cryostat keep arriving from India. As of today, 7 out of the 12 required segments have been delivere [...]

    Read more

  • Cooling water system | The tanks within a tank

    Deep inside the bowels of the Tokamak Building, the entrance to one of most spectacular rooms of the whole installation resembles that of a broom cupboard. [...]

    Read more

  • ITER assembly | Last major assembly contract signed

    One year after finalizing two major machine assembly contracts, the ITER Organization has chosen the contractors who will carry out assembly and installation ac [...]

    Read more

Of Interest

See archived entries

Poloidal field coils

Turning tables and hot resin

One of only two manufacturing facilities located on the ITER site, the Poloidal Field Coils Winding Facility was constructed by Europe to house the winding, impregnation and assembly activities for ITER's largest ring-shaped magnets. Manufacturing is underway now on a 17-metre-in-diameter poloidal field coil called PF5.

 (Click to view larger version...)
In the first step of the process, the raw material—niobium-titanium conductor—is wound into a flat, double-layer, spiralled coil called a double pancake. Several layers of glass-fibre tape are applied as the conductor enters the winding table to insulate the conductor turns from one another. In this photo, European contractors are winding the sixth in the series of eight double pancakes required by PF5. The winding table rotates slowly as conductor is fed simultaneously from two spools in a process known as "two-in-hand" winding.

 (Click to view larger version...)
After completing the winding, the next step is to shape the "terminations"—the areas that connect one conductor length electrically to another, or one double pancake to another. A portion of conductor is opened, the turn insulation is removed and moulds are brought close to the double pancake to shape its end into a "termination joggle."

 (Click to view larger version...)
The creation of a termination box comes next. The box is welded to the jacket of conductor on one end with a stainless steel pipe for liquid helium cooling exiting on the other end.

 (Click to view larger version...)
The double pancakes are then transported by overhead crane to the vacuum pressure impregnation station and lowered into a custom-fit mould. Epoxy resin, injected over the course of several hours, fills all gaps and hardens the glass-fibre tape under the effect of heat and pressure. A 36-hour "curing" phase at 140 °C completes the process, which gives the double pancake rigidity and ensures electrical insulation. During this process the conductor ends, which carry the terminations to be used for joints between the double pancakes, are isolated by an "insulation breaker," which keeps the resin from binding these areas. In this picture, one double pancake is undergoing impregnation in the background, while assembly is underway on the impregnation mould for another.

 (Click to view larger version...)
The final step is cold testing. Once the eight double pancakes for PF5 are stacked and assembled to form the complete winding pack, a second vacuum impregnation is performed to harden the entire assembly. The manufacturing process then ends with cold testing, during which the completed coil is cooled to low temperature (approximately 80 K) in order to simulate the thermal stresses and the work conditions that will be experienced during operation. In this way, the performance of the coils will be tested before their installation in the ITER machine.


return to the latest published articles