Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Assembly | Set of handling tools for in-vessel installation finalized

    Inside of a test facility that reproduces the volume and geometry of the ITER vacuum vessel environment, a team from CNIM Systèmes Industriels has dem [...]

    Read more

  • 360° image of the week | The assembly theatre

    Ever since it was invented almost two centuries ago, photography has tried to capture what the human eye actually sees. Despite huge progress achieved, it has n [...]

    Read more

  • Science | Favourable impurity dynamics in ITER confirmed by experiment

    Recent studies at the JET tokamak confirm the physics basis for tungsten transport at the edge of fusion-producing plasmas in ITER and the project's strategy fo [...]

    Read more

  • Image of the week | 15th D-shaped coil delivered

    Fifteen out of ITER's 19 D-shaped toroidal field coils have been delivered. Toroidal field coils are among the largest and heaviest components of the ITER machi [...]

    Read more

  • Spinoffs | Japan develops first high-output, multi-frequency gyrotron

    Building off expertise developed in the supply of high-power, high-frequency gyrotrons for the ITER Project and the JT-60SA tokamak, Japan's National Insti [...]

    Read more

Of Interest

See archived entries

Nuclear doors

Lifting a sixty-tonne leaf

There is a set of doors in the ITER Tokamak Building that makes one feel like Gulliver in Brobdingnag, the land of the giants in Jonathan Swift's novel. Massive in dimension and weight, the doors require a custom-made handling tool for installation.

The leaf mounting tool is one-of-a-kind—created by contractor Cegelec/Sommer to move the massive port cell doors to the concrete pouring station and back to their final installation locations. Coloured in bright red and sitting on eight yellow double wheels, the tool is equipped with two large holding frames that clutch the port cell door like a sandwich. (Click to view larger version...)
The leaf mounting tool is one-of-a-kind—created by contractor Cegelec/Sommer to move the massive port cell doors to the concrete pouring station and back to their final installation locations. Coloured in bright red and sitting on eight yellow double wheels, the tool is equipped with two large holding frames that clutch the port cell door like a sandwich.
Extending out radially from the concrete bioshield—like so many spokes around a central hub—are nine-metre-long chambers called port cells. The trapeze-shaped spaces will accommodate heating pipes, electricity cables, diagnostic lines and maintenance systems as they pass through to the vacuum vessel from outlying galleries. The port cells also have a part to play in shielding workers and the environment from radiation.

This model shows the neutron flux within the Tokamak Building with the highest levels in red and the lowest in blue. The confinement properties of the port cell doors (the dashes in white forming the outer circle) are clearly illustrated. (Click to view larger version...)
This model shows the neutron flux within the Tokamak Building with the highest levels in red and the lowest in blue. The confinement properties of the port cell doors (the dashes in white forming the outer circle) are clearly illustrated.
At the far end of each port cell (relative to the machine) are heavy nuclear doors that act as a confinement barrier preventing neutrons and potential contamination from passing through.

Forty-six nuclear doors will be necessary to close off the same number of port cells. Made of steel, the doors are 4.2 meters wide, 3.8 meters high and 0.8 meters thick. Delivered hollow, they will be filled on site with approximately 7.5 cubic metres of special heavy concrete that—when poured into each door—increases their weight from 30 tonnes to roughly 60 tonnes each.

The French-German engineering consortium Cegelec/Sommer, subcontractor to the European consortium VFR that is in charge of the construction of the Tokamak Complex, is manufacturing the nuclear doors. Cegelec/Sommer has also developed a custom-made lifting device called the "leaf mounting tool." Built to precise ITER specifications, this heavy-duty machine is capable of maneuvering the massive port cell doors within the confined space of the Tokamak Building.

Port cells connect the bioshield wall to the outlying galleries. In the two port cells visible here, work is either underway (left) or completed (right) on the hinge and lock supports for the nuclear doors. (Click to view larger version...)
Port cells connect the bioshield wall to the outlying galleries. In the two port cells visible here, work is either underway (left) or completed (right) on the hinge and lock supports for the nuclear doors.
The machine's hydraulically adjustable lifting straps lift each door off the ground by a few centimeters and hold it in place between the tool's steel frames, while the tool travels to the concrete filling station and back. Eighteen doors will be fitted into three-piece steel doorframes at B1 (upper basement) level, and 14 each on levels L1 (ground level) and L2 of the Tokamak Building.  

Once mounted, the port cell doors will remain closed, only to be opened for machine assembly or future maintenance activities. For operators to have easy routine access to the port cells, regular-sized "personnel access doors" are fitted into the centre of each port cell door.

Sixteen port cell doors have been delivered, and seven have already been filled with heavy concrete. Teams are ready to begin installing the port cell doors into their frames—an activity that will last until mid-2020.



return to the latest published articles