Cryostat | Home stretch for base and lower cylinder

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Vacuum vessel assembly | Thermal shield passes first trial

    In the oversized world of ITER, the 11-metre-tall vacuum vessel thermal shield panels are lightweight components. At approximately 10 tonnes, they cannot compar [...]

    Read more

  • In memoriam | Professor Valery Aleksandrovich Kurnaev

    It is with great sadness that the ITER Organization has learned of the loss of Professor Valery Aleksandrovich Kurnaev, Director of the Moscow National Research [...]

    Read more

  • MITICA experiment | First integrated power supply tests

    In October, power supply components procured by Japan and Europe for ITER's neutral beam injector prototype were tested together for the first time. Due pandemi [...]

    Read more

  • ITER Scientific Data Centre | How to manage 2 petabytes of new data every day

    Extracting as much information as possible from operation will allow ITER to make the most efficient use of the machine. Some of the data will be immediately ne [...]

    Read more

  • Image of the week | Europe's coil #5 unloaded at Fos harbour

    Of the eighteen D-shaped toroidal field coils (plus one spare) that are needed for the ITER Tokamak, four (two from Europe and two from Japan) have already been [...]

    Read more

Of Interest

See archived entries

Cryostat

Home stretch for base and lower cylinder

Just over two years after the first welding activities were initiated in the Cryostat Workshop at ITER, Indian Domestic Agency contractors are executing the final assembly tasks on the two lower sections of the cryostat—the base and the lower cylinder. Site acceptance tests are planned in March/April.
 
The components of the cryostat base—the 20-metre-in-diameter bottom disk, side shells, and 30-metre-in-diameter pedestal ring—are positioned for final assembly in the Cryostat Workshop. After welding, tests and final machining, site acceptance tests will be carried out in April 2019. (Click to view larger version...)
The components of the cryostat base—the 20-metre-in-diameter bottom disk, side shells, and 30-metre-in-diameter pedestal ring—are positioned for final assembly in the Cryostat Workshop. After welding, tests and final machining, site acceptance tests will be carried out in April 2019.
On large steel frames at either end of the Cryostat Workshop ITER's largest component—and the world's largest stainless steel high-vacuum pressure chamber—is taking shape. The 29 x 29 metre cryostat has two important functions in the ITER machine: it provides a vacuum environment to critical "cold" components (the magnets operating at 4.5 K and thermal shield operating at 80 K); and it has a structural role in supporting the mass of the Tokamak and transferring horizontal and rotational forces to the radial walls.

The assembly of the cryostat has been underway since September 2016, when teams of welding specialists began assembling the pie-slice-shaped segments of tier one of the base. Work began in 2017 on the lower cylinder and today, the fabrication of both lower sections has advanced to the final activity stage under Indian contractor Larsen & Toubro (manufacturing design, fabrication and assembly) and sub-contractor MAN Energy Solutions (welding).

The last seam welds are underway now on the lower cylinder, while the three parts of the base—lower sandwich, upper pedestal, and vertical shells—have been aligned for final welding and assembly.

See more detail in the gallery below. 



return to the latest published articles