Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Manufacturing | Completion of the first vacuum vessel gravity support

    The factory acceptance test on the first ITER vacuum vessel gravity support has been successfully completed at Haneul Engineering in Gunsan, Korea. Under the 8, [...]

    Read more

  • Technology | Hail showers in ASDEX Upgrade for ITER disruption mitigation

    Just before the 2021 Christmas holiday break, the team at the ASDEX Upgrade tokamak successfully fired frozen deuterium pellet fragments into a plasma as part o [...]

    Read more

  • Image of the week | Like a Meccano under the Christmas tree

    Like Erector set or Meccano parts scattered beneath the tree on Christmas morning, components for the ITER Tokamak cover the floor of the Assembly Hall, waiting [...]

    Read more

  • Poloidal field coils | 12 months saved on number two

    Whatever their size or position, the role of the ITER poloidal field coils is to shape and stabilize the plasma inside the vacuum vessel. However, as the plasma [...]

    Read more

  • Divertor dome | Russia delivers a full-scale prototype

    A multiyear qualification program in Russia has concluded with the successful manufacturing and testing of a full-scale divertor dome prototype at the Efremov I [...]

    Read more

Of Interest

See archived entries

US National Academies

"US should remain in ITER"

The US National Academies of Sciences, Engineering, and Medicine has completed a multiyear study of the overall status of magnetic confinement fusion research in the United States. Its recommendation? Continued US participation in the ITER Project and an unambiguous increase in funding for the domestic fusion program leading to the construction of a compact pilot plant.

The Tokamak Fusion Test Reactor (TFTR) operated at Princeton Plasma Physics Laboratory (PPPL) from 1982 to 1997. It is the only machine, with the European JET, that implemented the actual fusion fuels deuterium and tritium plasmas, producing significant levels of fusion power. The Committee on a Strategic Plan for Burning Plasma Research now recommends that the United States start a national program leading to the construction of a compact pilot plant. During the course of its investigations, the Committee visited ITER, General Atomics (DIII-D tokamak), and the Princeton Plasma Physics Laboratory (NSTX tokamak). (Click to view larger version...)
The Tokamak Fusion Test Reactor (TFTR) operated at Princeton Plasma Physics Laboratory (PPPL) from 1982 to 1997. It is the only machine, with the European JET, that implemented the actual fusion fuels deuterium and tritium plasmas, producing significant levels of fusion power. The Committee on a Strategic Plan for Burning Plasma Research now recommends that the United States start a national program leading to the construction of a compact pilot plant. During the course of its investigations, the Committee visited ITER, General Atomics (DIII-D tokamak), and the Princeton Plasma Physics Laboratory (NSTX tokamak).

The Final Report of the Committee on a Strategic Plan for Burning Plasma Research was the latest in a number of steps undertaken by policymakers in the United States to evaluate the state of domestic fusion research—including current and planned participation in international programs—and to develop a strategic plan for the future.

In 2016, after a detailed evaluation of the ITER Project, the US Department of Energy issued a report to Congress recommending continued US participation in 2017 and 2018 as "in the best interest of the nation." The report also suggested a re-evaluation of US participation based on project progress prior to the Fiscal Year 2019 budget submittal.

The committee formed to carry out this re-evaluation—the Committee on A Strategic Plan for U.S. Burning Plasma Research—delivered an interim report one year ago on the importance of burning plasma research to the development of fusion energy as well as to plasma science and other science and engineering disciplines. In it, ITER was highlighted as "the only existing project to create a burning plasma at the scale of a power plant."

The final report issued this month makes two recommendations:
  • First, the United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant.
  • Second, the United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.
"ITER is a burning plasma experiment and the critical next step in the development of fusion energy. It is a large and ambitious project that integrates multiple advanced technologies and combines the scientific and engineering expertise, industrial capacity, and financial resources of many nations. As a partner, the United States receives full benefit from the technology developed for ITER while providing only a fraction of the financial resources. Methods to control the plasma and extract the electricity-producing heat will be tested and developed. U.S. industry is building major systems for ITER and thereby gaining expertise in fusion engineering science and building industrial capabilities." [Executive Summary]

See the press release for more information or to download the full report.


return to the latest published articles